

CONTENTS

Features	B5-02
Ratings	B5-04
Application	B5-05
Control Circuit Diagram & Dimensions	B5-10

Vacuum Transfer Switches, VTS 7.2kV, 400/600A

Vacuum Transfer Switches

B5-03

VITZRO EM Vacuum Transfer Switch uses a vacuum interrupter and BMC barrier that improved the insulation and is built-in with an electrical and mechanical interlock device and an over-current lock device. It is a power transfer switch that can prevent failures due to an interruption faults in case of a short circuit and over-current conduction.

An electrical and mechanical interlock is built-in.

- There are no malfunctions since the transfer device is equipped with the electrical and mechanical interlock.
- It is easy to design since there is no need to consider the electrical and mechanical interlock at outside.

It ensures a long operational cycle and long durability.

- The vacuum interrupter used at the switch part consumes very little contacts and the vacuum cycle is 20 years or more.
- The mechanical part is structured in the minimized solenoid method which is superior in its durability.

It is easy to perform a maintenance work.

• VTS is in a draw-in/out structure which enables to perform various inspections easily and the molded insulation barrier is an open-type that allows easy cleaning and inspection. The transfer operation is carried out by an instantaneous excitation mode and its power is consumed only during the transfer so it is economical.

Ratings / Application

Ratings

Туре		Fixed Type	VTS-6N4		VTS-6N6			
		Draw-Out Type	VTS-6N4E VTS-6N6			6N6E		
Rated Curren	Rated Current		400 600			00		
Rated Voltage	e	kV	7.2					
Poles		Р		3	3			
Short Time C	urrent(1sec)	kA		12	2.5			
Rated Closing	Rated Closing Current kA		31.5					
Lock Current		А	2500					
Operational	Rated Current Switch	times	10,000					
Cycle	Continuous No-Load Switch	times	10,000					
Transfer Sequence			$A \leftrightarrow off(trip) \leftrightarrow B$					
	Main Circuit - Earth	kV		2	2			
Power Frequency	Between Phase- Shifting Main Circuits	kV	22					
Withstand Voltage	Between In - Phase Main Circuits	kV	35					
	Control Circuit - Earth		2					
	Main Circuit - Earth	kV	60					
Impulse Withstand	Between Phase- Shifting Main Circuits	kV	60					
Voltage	Between In - Phase Main Circuits	kV	70					
Operation Mo	Operation Mode		Magnetic Operation (Instantaneous Excitation Mode)					
o	Closing		DC 100/110V, 30A or below					
Operating Power	Trip		DC 100/110V, 5A or below					
Control			DC 100/110V, 0.3A or below					
External Dim	ensions & Weight							
Weight	Fixed Type	kg	120		130			
mengint	Draw-Out Type	kg	140		150			
			Fixed Type	Draw-Out Type	Fixed Type	Draw-Out Type		
Dimensions		Н	585	545	585	545		
(mm)		W	530	592	530	592		
	@ #4		700	870	700	870		
Reference Standards		JIS C4605						

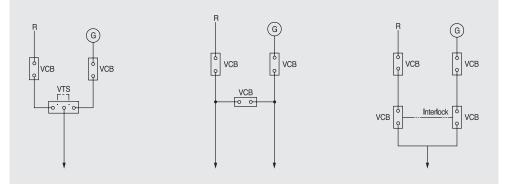
Comparison on Equipment Application	Туре	VTS Type Transfer Switch	Transfer using Mounting Type Switch	Two Circuit Breakers
	Product Price	Built-in with an electrical and mechanical interlock, Instantaneous Excitation Mode	Built-in with an electrical and mechanical interlock, Instantaneous Excitation Mode	It requires a mechanical interlock to ensure safety when using
		Medium Price	Low Price	High Price
	Panel Installation Price	It is possible to install 3 VTS+VCB at one side of cubicle which is the minimum installation space	It requires at least 2 sides since it can install 3 Mounting Type+VCB	It requires at least 2 sides since it can install total of 5 circuit breakers
		Low Price	High Price	High Price
	Maintenance Cost	It is a draw-out type so it is easy to draw out from the panel and an inspection of each part can be done in a short time	It is a mounting-type so it is difficult to draw out from the panel and it requires a long time an inspection of each part	After the inspection, it is necessary to check each operation of the interlock part
		Low Price	High Price	Medium Price
	General Comparison	Low Price	Medium Price	High Price

Applied Locations

 $\bullet \mbox{Industrial plant facilities that may suffer a loss due to a power failure$

- •A place that is restricted due to the dimensions of the underground transformer room •Facilities that permit no power failure including hospitals, broadcasting stations, airports, banks and so on
- •Special fire-prevention facilities that are regulated in the Fire Services Act (Department stores, theaters, hotels and etc)

B5-06


Application

On MV Power Transfer

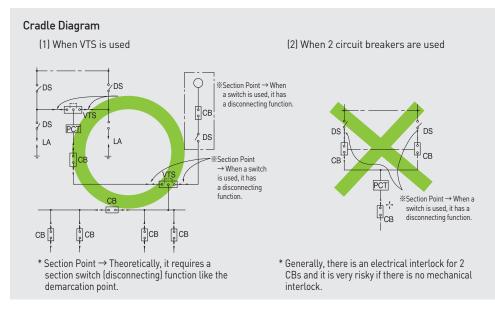
Example on Power Transfer Circuit

Currently, there are no standardized opinions and regulations on circuit composition and equipment used for the medium-voltage power transfer (2-line circuit, power-receiving commercial power-emergency power transfer, commercial power - isolated power generation transfer) and the designers are responsible for the selection of methods and equipment, so their role is critical.

The following is an example on the power transfer circuit.

Reasons for Using a Switch for Power Transfer

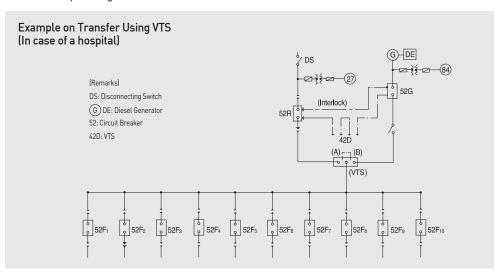
According to the $\lceil MV$ Power-Receiving Equipment], it is specified that a section switch should be installed at the demarcation point for the security. A section switch refers to a switch that divides the electric lines and it has a role to prevent line mixing by increasing the withhold voltage between in-phase main circuit terminals of the equipment, higher than the other parts (for example, higher than main circuit-earth), and by performing a ground fault for the abnormal voltage from outside and inside.

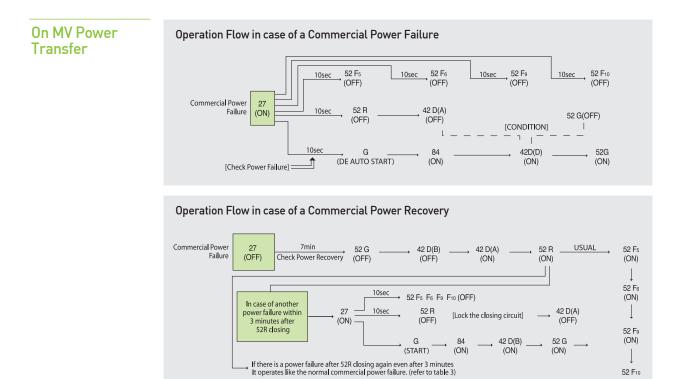

Main MV Equipment Performance (When appplying short circuit current of 8kA or 12.5kA at 7.2kV power incoming point)

Name of Equipment Main Performance		Disconnecting Switch	Switch	Circuit Breaker	Contact Switch	
Secti	Section Switch (Disconnecting) Performance		0	0	×	×
		Between In - Phase Main Circuits	35kV	35kV	22kV	16kV
≶	E	Between Phase - Shifting Main Circuits	22kV	22kV	22kV	16kV
ithstan		Between Main Circuit - Earth	22kV	22kV	22kV	16kV
Withstand Voltage		Between In - Phase Main Circuits	70kV	70kV	60kV	No Regulation
	Impulse	Between Phase - Shifting Main Circuits	60kV	60kV	60kV	45kV
		Between Main Circuit - Earth	60kV	60kV	60kV	45kV
Load Current Breaking		×	0	0	0	
Short Circuit Current Breaking		×	× (Lock when it exceeds the breaking current of the switch)	0	× (4.4kA is max.)	
Short Time Current		0	0	0	× (4.4kA is max.)	
Closing Current		×	0	0	×	

B5

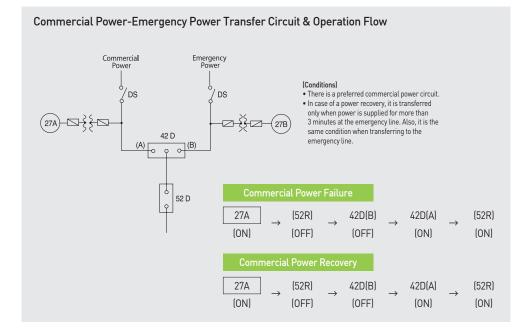
Currently, there are no standardized opinions and regulations on circuit composition and equipment used for the high-voltage power transfer (2-line circuit, power-receiving commercial power-emergency power transfer, commercial power - isolated power generation transfer) and the designers are responsible for the selection of methods and equipment, so their role is critical.

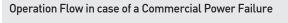

The following figure 1 is a representative power transfer skeleton diagram. If you observe this circuit in detail by comparing with the $\lceil MV$ Power-Receiving Equipment Manual_J, for the transfers between commercial power (A) \leftrightarrow commercial power (B) or commercial power \leftrightarrow isolated power generation, it will be dangerous if a switch with the disconnecting function is not used.


Example on VTS Application

(1) Example on Commercial Power - Isolated Power Generation

When recovered to the commercial power, there is a delay time which is based on the Γ Generation Facility Manual and when there is a commercial power failure, there is no restriction in setting the transfer time from the commercial power to the isolated power generation.



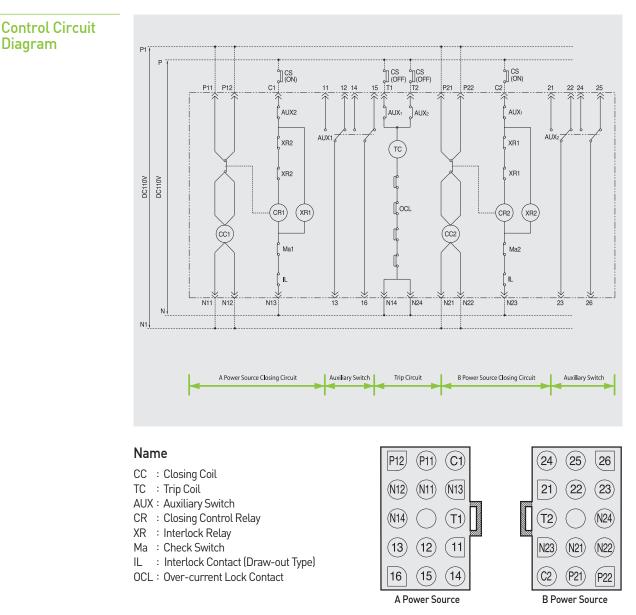

(2) Example on Commercial Power-Emergency Power Transfer (2-line circuit power-receiving)


A commercial power-emergency power transfer circuit and its operation are marked on figure5, but it is rare in new cases, rather used by remodeling the existing installation. In this case, there are no restrictions on transfer time and so forth, but the time should be set according to the number of contact relays, section switches and so on to prevent the re-closing to the fault lines.

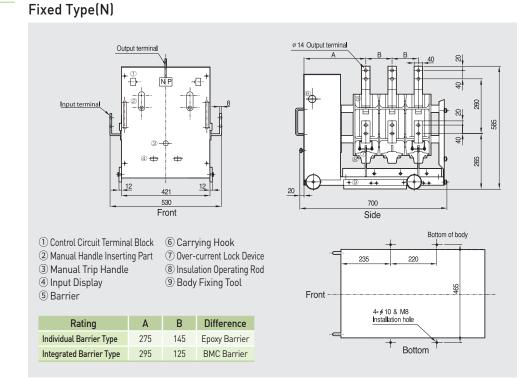
Surge Protection when Using VTS

On MV Power Transfer

A vacuum device interrupts arc at a high-vacuum state so it has an excellent breaking capability due to the high dielectric strength of vacuum and the high-speed diffusion of arc. However, when switching the rotating machines such as no-load motors and generators or switching the transformers, the current is interrupted before it reaches a zero point. This generates an over-voltage due to the current chopping and it may destruct the insulator of motors so a surge protection is required.

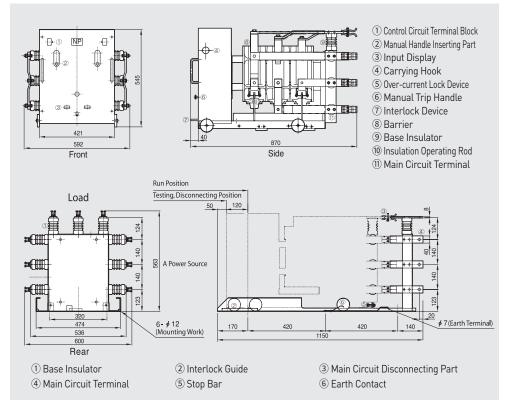

VTS performs the transfer at no-voltage, so it does not require a surge protection. (However, if VCB is used as a circuit breaker, a surge protection is required.)

- Refer to our S/A catalogue for standard on selecting a surge absorber (S/A).


Туре		KMSA-3.6	KMSA-7.2
Rated Voltage	kV	3.3	6.6
Applied Circuit Voltage	kV	3.6	7.2
Operation Starting Voltage	kV	9 ~ 10	18 ~ 20
Residual Voltage	kV	13 or below	26 or below
Classification Current	kA	5	5
Discharge Withstand Current (4×10µs)	kA	40	40
Rated Frequency	Hz	60	60
Weight	kg	0.41	0.6

Rating of Surge Absorber

Control Circuit Diagram & Dimensions



* When composing a circuit using an operating transformer at operating power, a display lamp should be connected to the AC part.

Draw-Out Type(E)

Dimensions

Vacuum Transfer Switches