



MAAAAA

### **General Catalog**







Company Vision

### **Create Better Life**

To the Light of Technology, To the Light of Value and To the Light of Reliability VITZRO EM, in company with the customers

VITZRO EM is a leading company in the electric equipment field, developing an advanced technology, to provide more satisfaction and more advantages for you. Based on a great, expert knowledge and technology on heavy electric equipment, electric power equipment and aerospace field, VITZRO EM creates a new value to propose a new standard that will change the future.

### A Bright Future, VITZRO EM

A company that customers love more than ever for we give you a larger value. Find a bigger world along with VITZRO EM!



#### A company that believes in faith and creativity as the optimal value

VITZRO EM has developed into a manufacturer of MV equipment, LV equipment, protective equipment and relays in the domestic electric equipment business with the company vision, 'Faith' and 'Creativity.' Based on the 'Faith', we think of our customers and with 'Creativity', we provide a new value. VITZRO EM will provide the new value for the convenience of customers. Basically, high-quality electric equipment and services will be provided and we will endeavor to meet the requirements of customers through our humane and sensible attitudes. Our company represents the electric equipment, yet we are the company of humans. Our company thinks of customers first by providing and enabling the use of convenient and stable equipment. VITZRO EM is the new value to pursue.

1955 electric machine date presentating

### **Technology Integrated Global Group**

209 noniscue 2500000

1006 Paraided gritte log t

#### The History of VITZRO EM is the History of Technology.

VITZRO EM was founded in 1955, at the embryonic stage of domestic electric power industry and as we continue our tradition and history for over half a century, we constantly challenged and leapt forward, leading the future with the reputation of Korea's best technology company.

1999 los competitive quality as the sense

#### 1955~1988 History of Technology, Open Up New Vistas

Kwangmyung Electric Co. was founded in 1955 and started as a neutral electricity manufacturer in January, 1968 and moved the plant to Seongsu-dong in April, 1972. The company prepared a foundation as a technology company through a technical tie-up with AICHI Company and VSS & ATS of Japan in April, 1981 and a technical cooperation with MEIDENSHA Company of Japan and a contract was concluded on Korean retail stores (V.I) in December of the same year. VCB 7.2kV-Class Type Test (localization) was completed in July, 1982 and VCB 25.8kV-Class MCSG 2 Type and 7.2kV Type Tests were completed in September of the following year. We were designated as an electric parts and materials development company (Ministry of Commerce, Industry and Energy) for Type1 other than a vacuum contact in July, 1986 and established a technical cooperation with LINDSEY Company, USA on Polymer Concrete in December of the following year. In addition, 4 types of ACB were developed in June, 1988 and successfully localized them (KEMA Authentication, Netherlands).

#### 1989 ~ 1999 Opportunity, Challenge and Remarkable Leap

The company name was changed to Kwangmyung Electric Generation Co. in June, 1989 and an affiliated technology lab was founded in December of the same year. We obtained KS marks for VCB 7.2kB, 8kA and 12.5kA in 1990 (Industrial Advancement Administration) and passed the development test for ACB 2 Types (KERI) in 1991 and for outdoor VCB and Gas Insulated Load Break Switch (PGS) (CESI, Italy) in 1993. We acquired the KS mark for Gas Insulated Load Break Switch (PGS for manufacturing) in 1995 and were awarded with the first Export Award (KEMC). We began exporting ATS to GENERAC.CORP, USA in 1995 and obtained KSA-QA ISO9001 certificate. We moved the office to Seoul in August, 1996 (Neung-dong, Gwangjingu, Seoul) and successfully developed Manual/ Motorized ASS 25.8kV 200A in December. Also, VCB development test was completed in 1997 (POWER TECH, CANADA), developed L/A 5kA in 1998 (Polymer Rubber Type), developed VCB 25.8kV, 31.5kA, 38kA and 40kA and acquired BVQ1 ISO 9001 certificate. A joint company with China was founded in 1998 and we were awarded IR52 Jang Young Shil Award in February of the following year (Maeil Business Newspaper) and selected as one of the 50 firms with qualitative competitiveness in 1999 which displayed our technical skills and quality that we strengthened for years.

#### 2000~2016\_VITZRO, Stepping Forward to the World

The company name was changed to VITZRO EM Co. in 2000. We laid a foundation for a rapid growth by developing VCB 12kV 1250A 25kA/15kV 1200A 25kA and registering in KOSDAQ stock market. A new plant was constructed in July of the following year (located in Seonggok-dong, Ansan, Gyeonggi Province) and we were designated as a promising small business (Gyeonggi Province Office), an electric parts and materials development company and INNO BIZ company (Joint Korean Economic Newspaper/Small and Medium Business Administration). We sped up on development of new technology and products and developed Cable Termination kits, Insulation Cover, Feed-type ASS (auto & manual), Outdoor VCB Bushing (Polymer Type) and Processed Gas Insulated Load Break Switch in 2002, VCB for nuclear power, ACB for nuclear power (508V 30/50/65kA), Current Limit Power Fuse and so forth in 2003. We were also awarded with various certificates and awards that prove our quality and technology such as a reliability certificate on Processed Gas Insulated Load Break Switch (PGS) in 2004 (R Mark, Korean Agency for Technology and Standards), a Certificate of Quality & Environment System and Aerospace Quality System (ISO 9001 & AS9100, ISO 14001) and a grand prize at the 1st Logo & Symbol Mark Contest (Ministry of Commerce, Industry and Energy Award). We obtained GD mark in 2005 and finally got a 1,000 ten million dollar-export prize in November, 2006, confirming the remarkable growth of VITZRO EM.

#### 2017\_VITZRO EM New Subsidiary

In July 2017, VITZRO EM starts its electric-power equipment business through physical division. Through product development using VI technology, we plans to grow into a only one of electrical equipment industry, VITZRO EM has a vision to become a global leader based on its technical superiority and business expertise.

Best products of electric equipment field including LV and HV from designing, manufacturing, installing and diagnosing the equipment to composing the power system, it is based on the accumulated, global standard technology and continuous R&D.





Thermal Overload Relay

- Direct connection to a magnetic contactor
- Finger proof cover can be installed
  Separation of power/operation part



- Auxiliaries • Standardized auxiliaries, easier to apply
- AL, AX, UVT, Shunt various auxilia



Vacuum Interrupter/Embedded Pole

- Maintain high-vacuum state through automation process
- Compact and lightweight, durable design
   Collect and store all manufacturing information
- Excellent mechanical strength and degasing High-speed breaking and short arcing time



Main Circuit Breaker for Rolling Stock/ Vacuum Train Breaker (MCB/VTB)

- The sole main circuit breaker for rolling stock in the country
- Excellent seismic performance Detection of operating pressure and auto trip function
- Stable breaking feature (AC, DC line)

#### **IED & Controller**



#### Digital Protection Relay VIPAM

- System protection required, relay element provided Store history of faults(trouble) and wave form
- Provide analysis function through PC interlocking
   RS422/485 communication support

#### **Protective Device**



#### Lightning Arrester/Surge Absorber(LA/SA)

- Optimal motion of Gapless type
   Scatter prevention when explodes using a polymer LA
- Can be used outdoors using a polysil SA
- Fire prevention due to nonflammable material
- English/Korean language support



#### Digital Control Meter VIMAC, VIDER Power quality analysis and breaker control Automatic power factor control (APFC), harmonic analysis



#### Surge Protective Device

- IEC and KS standard certification
- Built-in fuse with disconnecting device function
   Excellent TOV failure feature
- Operation status display lamp (LED Lamp)
- Easy to install using a Plug In type



Gas Insulated Load Break Switch(GLBS)

Division of lines and tapped line applied
3 position function(ON, OFF, Earth)

Increase safety with hot-line display
Certificate on reliability by KATS

Low pressure display and lock function

Vacuum Transfer Switches

- The one and only Medium Voltage Transfer Switch in Korea
- Electrical & Mechanical Interlock available.
   Economical optimization (Two sides of panels and two
- pieces of VCBs are not necessary.] Minimized outside dimension which can be possible with multistage loading.



Current Limit Power Fuse • Optimal current limit feature

- Protection through full back-up with high breaking capacity
  Maximum striker motional energy in the country
- Simplified with 4 types of fuse forms
   Protect transformers, motors, Capacitor and wires

# **VITZRO** EM

### We Create the Next Value

By the light of technology, value and confidence, Together with customers, we are VITZRO EM

Leading the pleasant and affluent field of electric power equipment with state-of-the-art technology, VITZRO EM is creating new value in order to offer greater customer satisfaction with greater business value as well as present new standards, while making a difference for a better future, based on thorough knowledge and skills in the fields of heavy electric equipment, power electronics and aerospace.

## VITZRO EM



| Vacuum Circuit Breakers    | B <sub>1</sub> |
|----------------------------|----------------|
| Load Break Switches        | B <sub>2</sub> |
| Automatic Section Switches | Вз             |
| Vacuum Contact Switches    | <b>B</b> 4     |
| Vacuum Transfer Switches   | B5             |
| Current Limit Power Fuses  | B6             |
| Varuum Interrunters        | B <sub>7</sub> |

**Medium-Voltage** 



# B1 Vacuum Circuit Breakers

#### CONTENTS

#### Vacuum Circuit Breakers

| Features                 | B1-02         |
|--------------------------|---------------|
| Product Line-Up          | B1-04         |
| Ratings                  | B1-0          |
| Ordering Information     | <b>B1-1</b> 1 |
| Accessories ······       | B1-12         |
| Dimensions               | B1-1:         |
| Control Circuit Diagrams | B1-36         |



### Vacuum Circuit Breakers 7.2kV~36kV(IEC Std.)/4.76kV~38kV(IEEE Std.)



It provides a product with an integrated technology, qualified nuclear energy and various voltage ranges.

- It is a product incorporated with an accumulated vacuum technology, operating device design and insulation design.
- VITZRO Vacuum circuit breakers meet or exceed IEC and IEEE standard. Vacuum circuit breakers are designed and tested per applicable section at IEC and IEEE.
- It is a product that can be used at various voltage rating from 4.76kV through 38kV.
- V-CHECK MARK Certification(VIDER VCB)

It ensures the stability by self-manufacturing the vacuum interrupters.

- VITZRO Vacuum circuit breakers meet all standards and certifications such as IEC, ANSI, UL, IEEE, KEMA and CSA.
- We provide the optimal arc extinguishing medium with high-vacuum, high arc extinguishing capability.

The product stability and life is greatly improved due to the solid insulation by applying molding to the interruption part.

- A core part of the interruption part, VI is molded and solid-insulated to improve the stability and life of the product.
- We are fully prepared for the surface discharge of vacuum circuit breaker by enhancing the insulation performance through the solid insulation.

It is easy to perform maintenance and compatible with new and old products.

- It uses the accumulated design data to display outstanding compatibility with old/new products.
- It is designed to enable easier maintenance and VCB can be inspected by simply checking the contact consumption and control circuits.
- A cover made up of an insulation material is adopted to maximize the safety of operators

Vacuum Circuit Breakers



### Class1E Vacuum Circuit Breakers For Nuclear Power Plant



It is well-known throughout the world as it passed Class 1E VCB performance test.

Class 1E VCB for nuclear power plants is manufactured based on the nuclear power certification system and it has completed the development test complying with KEPIC, EED 1100-2005.

Its quality improved greatly with the superior breaking function.

The Vacuum interrupters consist of three Vacuum bottles mechanically to spring-assisted operating mechanism, the interrupting time of the Vacuum bottle is approximately 3cycles (50millisee), and it can be used under unfavorable conditions such as under gas and ion emission without any severe impacts on circuit switching, ground fault, high-speed reclosing and Capacitor bank switching. It completed the seismic test, acquiring GENERIC Class.

It completed the seismic test based on Broadband Generic Spectra of IEEE C37.98 and meets the seismic standards of all nuclear power plants around the world.

### **Product Line-Up**

The full line up, various options to choose from!



For Nuclear Power Plant

**IEC Standard** 



#### Vacuum Circuit Breakers



Overseas IEEE (ANSI) Applied/ For Use Indoors





Outdoor

#### **IEEE Standard**



### Ratings

#### Small Capacity (7.2kV)

| Туре                                                    | VVB□-07408S   | VVB□-07612S              | VVB□-07620S                | VVB□-07120S | VVB□-07625S |  |  |  |
|---------------------------------------------------------|---------------|--------------------------|----------------------------|-------------|-------------|--|--|--|
| Rated Voltage(kV)                                       | 7.2           | 7.2                      | 7.2                        | 7.2         | 7.2         |  |  |  |
| Rated Current (A)                                       | 400           | 630                      | 630                        | 1250        | 630         |  |  |  |
| Rated Breaking Current(kA)                              | 8             | 12.5                     | 20                         | 20          | 25          |  |  |  |
| Rated Frequency (Hz)                                    | 60            | 60                       | 60                         | 60          | 60          |  |  |  |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 8             | 12.5                     | 20                         | 20          | 25          |  |  |  |
| Rated Breaking Capacity (MVA)                           | 100           | 160                      | 250                        | 250         | 320         |  |  |  |
| Rated Making Current (kAp)                              | 20.8          | 32.5                     | 52                         | 52          | 65          |  |  |  |
| Rated Breaking Time (Cycle)                             | 3             | 3                        | 3                          | 3           | 3           |  |  |  |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 20            | 20                       | 20                         | 20          | 20          |  |  |  |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 60            | 60                       | 60                         | 60          | 60          |  |  |  |
| Operating Sequence                                      |               |                          | 0-0.3s-C0-3min-C0          |             |             |  |  |  |
| Closing Operation Method                                |               | Motor-Spring Charge Type |                            |             |             |  |  |  |
| Trip Control Method                                     |               |                          | Shunt release              |             |             |  |  |  |
| Making Voltage (V)                                      |               | *DC                      | 24, 48, 110, 220 / AC 110, | 220         |             |  |  |  |
| Standard Auxiliary Contact                              | 4N0 4NC       | 4NO 4NC                  | 4N0 4NC                    | 4N0 4NC     | 6NO 6NC     |  |  |  |
| Rated Opening Time (sec)                                | 0.03          | 0.03                     | 0.03                       | 0.03        | 0.03        |  |  |  |
| No-load Closing Time(sec)                               | 0.05          | 0.05                     | 0.05                       | 0.05        | 0.05        |  |  |  |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, E, F, *G   | N, E, F, *G              | N, E, F, *G                | N, E, F, *G | N, E, F, *G |  |  |  |
| Body Weight (kg)                                        | 38            | 38                       | 42                         | 45          | 45          |  |  |  |
| Applicable Standard                                     | IEC 62271-100 |                          |                            |             |             |  |  |  |

\* To be released in 2018

| Туре                                                    | VVB□-07125S | VVB□-6225M        | VVB□-07140M                | VVB□-07240M | VVB□-07340M |  |  |  |
|---------------------------------------------------------|-------------|-------------------|----------------------------|-------------|-------------|--|--|--|
| Rated Voltage(kV)                                       | 7.2         | 7.2               | 7.2                        | 7.2         | 7.2         |  |  |  |
| Rated Current (A)                                       | 1250        | 2000              | 1200/1250                  | 2000        | 3000/3150   |  |  |  |
| Rated Breaking Current (kA)                             | 25          | 25                | 40                         | 40          | 40          |  |  |  |
| Rated Frequency (Hz)                                    | 60          | 60                | 60                         | 60          | 60          |  |  |  |
| Rated Short Time Withstand<br>Current(kA/3sec)          | 25          | 25                | 40(2sec)                   | 40(2sec)    | 40(2sec)    |  |  |  |
| Rated Breaking Capacity (MVA)                           | 320         | -                 | 500                        | 500         | 500         |  |  |  |
| Rated Making Current (kAp)                              | 65          | 65                | 104                        | 104         | 104         |  |  |  |
| Rated Breaking Time (Cycle)                             | 3           | 3                 | 3                          | 3           | 3           |  |  |  |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 20          | 20                | 20                         | 20          | 20          |  |  |  |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 60          | 60                | 60                         | 60          | 60          |  |  |  |
| Operating Sequence                                      |             | 0-0.3s-C0-3min-C0 |                            |             |             |  |  |  |
| Closing Operation Method                                |             | 1                 | Motor-Spring Charge Typ    | e           |             |  |  |  |
| Trip Control Method                                     |             |                   | Shunt release              |             |             |  |  |  |
| Making Voltage (V)                                      |             | * DC              | 24, 48, 110, 220 / AC 110, | 220         |             |  |  |  |
| Standard Auxiliary Contact                              | 6NO 6NC     | 6NO 6NC           | 6NO 6NC                    | 6NO 6NC     | 6NO 6NC     |  |  |  |
| Rated Opening Time (sec)                                | 0.03        | 0.03              | 0.03                       | 0.03        | 0.03        |  |  |  |
| No-load Closing Time (sec)                              | 0.05        | 0.05              | 0.05                       | 0.05        | 0.05        |  |  |  |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, E, F, *G | N, E, F, G        | N, E, F, G                 | N, E, F, G  | N, E, F, G  |  |  |  |
| Body Weight (kg)                                        | 45          | 145               | 270                        | 285         | 310         |  |  |  |
| Applicable Standard                                     |             |                   | IEC 62271-100              |             |             |  |  |  |

\* To be released in 2018

# Va

#### Medium Capacity(12kV~17kV)

| Туре                                                    | VVB□-12625S | VVB□-12125S | KVAD-12225M | VVB□-12140S       | VVBD-12240S   | VVB□-12340S | KVAD-15625M |
|---------------------------------------------------------|-------------|-------------|-------------|-------------------|---------------|-------------|-------------|
| Rated Voltage (kV)                                      | 12          | 12          | 12          | 12                | 12            | 12          | 15          |
| Rated Current (A)                                       | 630         | 1250        | 2000        | 1250              | 2000          | 3150        | 600         |
| Rated Breaking Current (kA)                             | 20/25       | 20/25       | 20/25       | 40                | 40            | 40          | 20/25       |
| Rated Frequency (Hz)                                    | 50/60       | 50/60       | 50/60       | 60                | 60            | 60          | 50/60       |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 25          | 25          | 25          | 40                | 40            | 40          | 25          |
| Rated Breaking Capacity (MVA)                           | 520         | 520         | 520         | 520               | 520           | 520         | 650         |
| Rated Making Current (kAp)                              | 65          | 65          | 65          | 104               | 104           | 104         | 65          |
| Rated Breaking Time (Cycle)                             | 3           | 3           | 3           | 3                 | 3             | 3           | 3           |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 28          | 28          | 28          | 28                | 28            | 28          | 36          |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 75          | 75          | 75          | 75                | 75            | 75          | 95          |
| Operating Sequence                                      |             |             | C           | -0.3s-CO-3min-C   | 0             |             |             |
| Closing Operation Method                                |             |             | Mote        | or-Spring Charge  | Туре          |             |             |
| Trip Control Method                                     |             |             |             | Shunt release     |               |             |             |
| Making Voltage (V)                                      |             |             | *DC24,      | 48, 110, 220 / AC | 110, 220      |             |             |
| Standard Auxiliary Contact                              | 6NO 6NC     | 6NO 6NC     | 6NO 6NC     | 6NO 6NC           | 6N0 6NC       | 6NO 6NC     | 6N0 6NC     |
| Rated Opening Time (sec)                                | 0.03        | 0.03        | 0.03        | 0.03              | 0.03          | 0.03        | 0.03        |
| No-load Closing Time (sec)                              | 0.05        | 0.05        | 0.05        | 0.05              | 0.05          | 0.05        | 0.05        |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, E, F, G  | N, E, F, G  | N, E, F, *G | N, E, F, *G       | N, E, F, *G   | N, E, F, *G | N, E, F, *G |
| Body Weight (kg)                                        | 42          | 45          | 130         | 208               | 218           | 249         | 130         |
| Applicable Standard                                     | IEC 622     | 271-100     | IEC 60056   |                   | IEC 62271-100 |             | ANSI C37.09 |

\* To be released in 2018

| Туре                                                    | KVAD-15125M | KVAD-15225M | VVBD-17625S | VVBD-17125S       | VVBD-17140S   | VVB□-17240S | VVBD-17340S |
|---------------------------------------------------------|-------------|-------------|-------------|-------------------|---------------|-------------|-------------|
| Rated Voltage (kV)                                      | 15          | 15          | 17.5        | 17.5              | 17.5          | 17.5        | 17.5        |
| Rated Current (A)                                       | 1200        | 2000        | 630         | 1250              | 1250          | 2000        | 3150        |
| Rated Breaking Current (kA)                             | 20/25       | 20/25       | 20/25       | 20/25             | 40            | 40          | 40          |
| Rated Frequency (Hz)                                    | 50/60       | 50/60       | 50/60       | 50/60             | 60            | 60          | 60          |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 25          | 25          | 25          | 25                | 40            | 40          | 40          |
| Rated Breaking Capacity (MVA)                           | 650         | 650         | 750         | 750               | 750           | 750         | 750         |
| Rated Making Current (kAp)                              | 65          | 65          | 65          | 65                | 104           | 104         | 104         |
| Rated Breaking Time (Cycle)                             | 3           | 3           | 3           | 3                 | 3             | 3           | 3           |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 36          | 36          | 38          | 38                | 38            | 38          | 38          |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 95          | 95          | 95          | 95                | 95            | 95          | 95          |
| Operating Sequence                                      |             |             | C           | 0-0.3s-CO-3min-C  | 0             |             |             |
| Closing Operation Method                                |             |             | Mot         | or-Spring Charge  | Туре          |             |             |
| Trip Control Method                                     |             |             |             | Shunt release     |               |             |             |
| Making Voltage (V)                                      |             |             | *DC24,      | 48, 110, 220 / AC | 110, 220      |             |             |
| Standard Auxiliary Contact                              | 6NO 6NC     | 6NO 6NC     | 6NO 6NC     | 6NO 6NC           | 6NO 6NC       | 6NO 6NC     | 6NO 6NC     |
| Rated Opening Time(sec)                                 | 0.03        | 0.03        | 0.03        | 0.03              | 0.03          | 0.03        | 0.03        |
| No-load Closing Time (sec)                              | 0.05        | 0.05        | 0.05        | 0.05              | 0.05          | 0.05        | 0.05        |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, E, F, *G | N, E, F, G  | N, E, F, G  | N, E, F, G        | N, E, F, G    | N, E, F, G  | N, E, F, G  |
| Body Weight (kg)                                        | 130         | 130         | 42          | 45                | 208           | 218         | 249         |
| Applicable Standard                                     | ANSI        | C37.09      |             |                   | IEC 62271-100 |             |             |

\* To be released in 2018

Vacuum Circuit Breakers

B1

### Ratings

#### Large Capacity(24kV~38kV)

| Туре                                                    | WBD-24613S    | VVB□-24113S   | WB□-24625S    | VVBD-24125S      | WB□-2225M        | WB□-25625S    | VVBD-25125S   | VVB□-2225M |
|---------------------------------------------------------|---------------|---------------|---------------|------------------|------------------|---------------|---------------|------------|
| Rated Voltage (kV)                                      | 24            | 24            | 24            | 24               | 24               | 25.8          | 25.8          | 25.8       |
| Rated Current (A)                                       | 630           | 1250          | 630           | 1250             | 2000             | 630           | 1250          | 2000       |
| Rated Breaking Current (kA)                             | 12.5          | 12.5          | 25            | 25               | 25               | 25            | 25            | 25         |
| Rated Frequency (Hz)                                    | 60            | 60            | 60            | 60               | 60               | 60            | 60            | 60         |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 12.5          | 12.5          | 25            | 25               | 25               | 25            | 25            | 25         |
| Rated Breaking Capacity (MVA)                           | 520           | 520           | 1040          | 1040             | 1040             | 1120          | 1120          | 1120       |
| Rated Making Current (kAp)                              | 32.5          | 32.5          | 65            | 65               | 63               | 65            | 65            | 63         |
| Rated Breaking Time (Cycle)                             | 3             | 3             | 3             | 3                | 3                | 3             | 3             | 3          |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 50            | 50            | 50            | 50               | 50               | 50            | 50            | 50         |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 125           | 125           | 125           | 125              | 125              | 125           | 125           | 125        |
| Operating Sequence                                      |               |               |               | 0-0.3s-C0        | -3min-CO         |               |               |            |
| Closing Operation Method                                |               |               |               | Motor-Spring     | Charge Type      |               |               |            |
| Trip Control Method                                     |               |               |               | Shunt r          | release          |               |               |            |
| Making Voltage (V)                                      |               |               | *             | DC24, 48, 110, 2 | 220 / AC 110, 22 | 0             |               |            |
| Standard Auxiliary Contact                              | 6NO 6NC       | 6NO 6NC       | 6NO 6NC       | 6NO 6NC          | 6NO 6NC          | 8N0 8NC       | 8N0 8NC       | 8N0 8NC    |
| Rated Opening Time (sec)                                | 0.03          | 0.03          | 0.03          | 0.03             | 0.03             | 0.03          | 0.03          | 0.03       |
| No-load Closing Time (sec)                              | 0.05          | 0.05          | 0.05          | 0.05             | 0.05             | 0.05          | 0.05          | 0.05       |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, *E, *F, *G    | N, E, F, G       | N, *E, *F, *G | N, *E, *F, *G | N, E, F, G |
| Body Weight (kg)                                        | 90            | 90            | 90            | 90               | 180              | 90            | 95            | 180        |
| Applicable Standard                                     |               | IEC 622       | 271-100       |                  | IEC60056         | IEC 622       | 271-100       | IEC60056   |

| Туре                                                    | KVAD-2140M | KVAD-2240M    | KVAD-2340M | KVAD-3131M       | KVAD-3231M       | VVAD-38140M | WAD-38240M    | VVAD-38340M |
|---------------------------------------------------------|------------|---------------|------------|------------------|------------------|-------------|---------------|-------------|
| Rated Voltage (kV)                                      | 25.8       | 25.8          | 25.8       | 36/38            | 36/38            | 38          | 38            | 38          |
| Rated Current (A)                                       | 1250       | 2000          | 3150       | 1200             | 2000             | 1200        | 2000          | 3000        |
| Rated Breaking Current (kA)                             | 40         | 40            | 40         | 31.5             | 31.5             | 40          | 40            | 40          |
| Rated Frequency (Hz)                                    | 60         | 60            | 60         | 60               | 60               | 60          | 60            | 60          |
| Rated Short Time Withstand<br>Current(kA/3sec)          | 40         | 40            | 40         | 31.5             | 31.5             | 40          | 40            | 40          |
| Rated Breaking Capacity (MVA)                           | 1800       | 1800          | 1800       | 2070             | 2070             | 2630        | 2630          | 2630        |
| Rated Making Current (kAp)                              | 104        | 104           | 104        | 82               | 82               | 104         | 104           | 104         |
| Rated Breaking Time (Cycle)                             | 5          | 5             | 5          | 3                | 3                | 3           | 3             | 3           |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 60         | 60            | 60         | 80               | 80               | 80          | 80            | 80          |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 150        | 150           | 150        | 170              | 170              | 150         | 150           | 150         |
| Operating Sequence                                      | 0-         | 0.3s-CO-3min- | 00         | 0-0.3s-CO-3min   | -CO, CO-15S-CO   | 0-          | 0.3s-CO-3min- | C0          |
| Closing Operation Method                                |            |               |            | Motor-Spring     | ) Charge Type    |             |               |             |
| Trip Control Method                                     |            |               |            | Shunt r          | release          |             |               |             |
| Making Voltage (V)                                      |            |               | *          | DC24, 48, 110, 2 | 220 / AC 110, 22 | 0           |               |             |
| Standard Auxiliary Contact                              | 8N0 8NC    | 8N0 8NC       | 8N0 8NC    | 8NO 8NC          | 8N0 8NC          | 6NO 6NC     | 6NO 6NC       | 6NO 6NC     |
| Rated Opening Time(sec)                                 | 0.03       | 0.03          | 0.03       | 0.03             | 0.03             | 0.03        | 0.03          | 0.03        |
| No-load Closing Time (sec)                              | 0.05       | 0.05          | 0.05       | 0.1              | 0.1              | 0.05        | 0.05          | 0.05        |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | N, E, F, G | N, E, F, G    | N, E, F, G | N, E, F, G       | N, E, F, G       | N, G        | N, G          | N, G        |
| Body Weight (kg)                                        | 350        | 370           | 370        | 530              | 550              | 530         | 550           | 580         |
| Applicable Standard                                     |            | IEC 60056     |            | IEEE C37.09      |                  |             |               |             |

#### For Use Outdoors (25.8kV~36kV)

| Туре                                                    | KVAX-2625M                                          | KVAX-2125M                  | KVAX-2225M    |  |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------|--|--|--|--|--|
| Rated Voltage (kV)                                      | 25.8(Outdoor)                                       | 25.8(Outdoor)               | 25.8(Outdoor) |  |  |  |  |  |
| Rated Current(A)                                        | 600                                                 | 1200                        | 2000          |  |  |  |  |  |
| Rated Breaking Current (kA)                             | 25                                                  | 25                          | 25            |  |  |  |  |  |
| Rated Frequency(Hz)                                     | 60                                                  | 60                          | 60            |  |  |  |  |  |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 25                                                  | 25                          | 25            |  |  |  |  |  |
| Rated Breaking Capacity (MVA)                           | 1120                                                | 1120                        | 1120          |  |  |  |  |  |
| Rated Making Current (kAp)                              | 63                                                  | 63                          | 63            |  |  |  |  |  |
| Rated Breaking Time (Cycle)                             | 5                                                   | 5                           | 5             |  |  |  |  |  |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 60                                                  | 60                          | 60            |  |  |  |  |  |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 150                                                 | 150                         | 150           |  |  |  |  |  |
| Operating Sequence                                      | 0-0.3s-C0-3min-C0, C0-15S-C0                        |                             |               |  |  |  |  |  |
| Closing Operation Method                                |                                                     | Motor-Spring Charge Type    |               |  |  |  |  |  |
| Trip Control Method                                     |                                                     | Shunt release               |               |  |  |  |  |  |
| Making Voltage (V)                                      | Default: DC125   SCADA Option Voltage: DC24, DC125V |                             |               |  |  |  |  |  |
| Standard Auxiliary Contact                              | 10NO 10NC                                           | 10NO 10NC                   | 10NO 10NC     |  |  |  |  |  |
| Rated Opening Time(sec)                                 | 0.05                                                | 0.05                        | 0.05          |  |  |  |  |  |
| No-load Closing Time (sec)                              | 0.1                                                 | 0.1                         | 0.1           |  |  |  |  |  |
| Installation Method<br>(Fixed(N), Drawout(E, F, G))     | For Outdoor                                         | For Outdoor                 | For Outdoor   |  |  |  |  |  |
| Body Weight(kg)                                         | 1000                                                | 1020                        | 1060          |  |  |  |  |  |
| Applicable Standard                                     |                                                     | GS5925-0025(2007), IEC60056 |               |  |  |  |  |  |

| Туре                                                    | VVBX-25640M    | VVBX-25140M                                                     | VVBX-25240M              | VVBX-25340M    | VVBX-36125M  |  |  |  |
|---------------------------------------------------------|----------------|-----------------------------------------------------------------|--------------------------|----------------|--------------|--|--|--|
| Rated Voltage (kV)                                      | 25.8 (Outdoor) | 25.8(Outdoor)                                                   | 25.8 (Outdoor)           | 25.8(Outdoor)  | 36 (Outdoor) |  |  |  |
| Rated Current (A)                                       | 600            | 1200                                                            | 2000                     | 3000           | 1250         |  |  |  |
| Rated Breaking Current (kA)                             | 40             | 40                                                              | 40                       | 40             | 25           |  |  |  |
| Rated Frequency (Hz)                                    | 60             | 60                                                              | 60                       | 60             | 50/60        |  |  |  |
| Rated Short Time Withstand<br>Current (kA/3sec)         | 40             | 40                                                              | 40                       | 40             | 25           |  |  |  |
| Rated Breaking Capacity (MVA)                           | 1800           | 1800                                                            | 1800                     | 1800           | 1560         |  |  |  |
| Rated Making Current (kAp)                              | 104            | 104                                                             | 104                      | 104            | 65           |  |  |  |
| Rated Breaking Time (Cycle)                             | 5              | 5                                                               | 5                        | 5              | 3            |  |  |  |
| Withstand Voltage Power<br>Frequency(1min)(kV/1min)     | 60             | 60                                                              | 60                       | 60             | 70           |  |  |  |
| Withstand Voltage Lightning<br>Impulse (1.2×50µs) (BIL) | 165            | 165                                                             | 165                      | 165            | 170          |  |  |  |
| Operating Sequence                                      |                | 0-0.3s-C0-3min-C0, C0-15S-C0 0-0.3s-C0-3min-C0                  |                          |                |              |  |  |  |
| Closing Operation Method                                |                | I                                                               | Motor-Spring Charge Typ  | e              |              |  |  |  |
| Trip Control Method                                     |                |                                                                 | Shunt release            |                |              |  |  |  |
| Making Voltage (V)                                      |                | Default : DC125                                                 | 5   SCADA Option Voltage | : DC24, DC125V |              |  |  |  |
| Standard Auxiliary Contact                              | 10NO 10NC      | 10NO 10NC                                                       | 10NO 10NC                | 10NO 10NC      | 10NO 10NC    |  |  |  |
| Rated Opening Time(sec)                                 | 0.05           | 0.05                                                            | 0.05                     | 0.05           | 0.03         |  |  |  |
| No-load Closing Time(sec)                               | 0.1            | 0.1                                                             | 0.1                      | 0.1            | 0.05         |  |  |  |
| Installation Method<br>(Fixed (N), Drawout (E, F, G))   | Outdoor        | Outdoor                                                         | Outdoor                  | Outdoor        | Outdoor      |  |  |  |
| Body Weight (kg)                                        | 1750           | 1800                                                            | 1900                     | 2000           | 1290         |  |  |  |
| Applicable Standard                                     |                | Item exempted from ES-5925-0001 certification IEC62271-100, 200 |                          |                |              |  |  |  |

### **Ratings / Ordering Information**

For Nuclear Power Plants

| Type Name                                          | KVAH 7□50M KVAH 6□50M KVAH 1□40M                                  |                               |                          |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------|--|--|--|
| Max Rated Voltage                                  | 4.76 kV                                                           | 8.25kV                        | 15kV                     |  |  |  |
| Rated Current                                      | 1200A / 2000A / 3000A                                             | 1200A / 2000A / 3000A         | 1200A / 2000A            |  |  |  |
| Rated Frequency                                    | 60 Hz                                                             | 60 Hz                         | 60 Hz                    |  |  |  |
| Constant (K)                                       | 1.0                                                               | 1.0                           | 1.0                      |  |  |  |
| Rated Breaking Current                             | 50 kA rms                                                         | 50kA rms                      | 40kA rms                 |  |  |  |
| Rated Breaking Capacity                            | 410 MVA                                                           | 710 MVA                       | 1040 MVA                 |  |  |  |
| Rated Short Time<br>Withstand Current (3S)         | 50 kA rms                                                         | 50 kA rms                     | 40kA rms                 |  |  |  |
| Rated Making Current                               | 130kA p                                                           | 130kA p                       | 104 kA p                 |  |  |  |
| Rated Breaking Time                                | 5 cycle                                                           | 5 cycle 5 cycle 5 cycle       |                          |  |  |  |
| Power Frequency Withstand Voltage                  | 19kV 36kV 36kV                                                    |                               |                          |  |  |  |
| Impulse Withstand Voltage (1.2×50µs)               | 60 kVp                                                            | 95 kVp                        |                          |  |  |  |
| Nuclear Power Electrical Class                     | Class 1E Class 1E                                                 |                               | Non Class 1E             |  |  |  |
| Nuclear Power Quality Class                        | Q Q                                                               |                               | S                        |  |  |  |
| Rated Operating Seq.                               | 0-0.3S-CO-3min-CO                                                 |                               |                          |  |  |  |
| Life (Rated Current Input)                         | 5,000 times                                                       |                               |                          |  |  |  |
| Operation Mode                                     | Spring Operation Mode                                             |                               |                          |  |  |  |
| Rated Operating Voltage (For Motor)                | DC 125V                                                           |                               |                          |  |  |  |
| Rated Operating Current (For Motor)                | I                                                                 | nrush 8.5A, steady state 1.5/ | 4                        |  |  |  |
| Rated Operating Voltage /<br>Current (For Coil)    | DC 125V, 5A                                                       |                               |                          |  |  |  |
| Rated Spring Reduction Time                        | √ 15 sec                                                          |                               |                          |  |  |  |
| Rated Making Time                                  | ⟨ 0.06 sec                                                        |                               |                          |  |  |  |
| Rated Opening Time                                 | ⟨ 0.05 sec                                                        |                               |                          |  |  |  |
| Auxiliary Contact                                  | 2N0 + 2NC                                                         |                               |                          |  |  |  |
| MOC Number of Contacts /<br>TOC Number of Contacts | 5N0 + 5NC / 3N0 + 3NC                                             |                               |                          |  |  |  |
| CB Weight (body)                                   | 288 kg / 318 kg / 318 kg                                          | 288 kg / 318 kg / 318 kg      | 285 kg / 318 kg / 318 kg |  |  |  |
| Certificate & Approval                             | EED1100 (2005) / IEEE Std C37.09 (1999) / IEEE Std C37.09a (2005) |                               |                          |  |  |  |



#### Designation parameters for order

- 1. Quantity
- 3. Applied Standards
- 5. Rated Current (A)
- 7. Standard Frequency(Hz)
   9. Operation Method
- 11 Central Valtage (AC/D
- 11. Control Voltage (AC/DC)
- 13. Number of auxiliary contacts
- 15. Designated parts
- 17. Designated spare parts
- 19. Delivery Due

- 2. Type Name
- 4. Rated Voltage(kV)
- 6. Rated Breaking Current(kA)
- 8. Installation Method
- 10. Operating Voltage (AC/DC)
- 12. BCT used or not & specifications
- 14. Standard parts
- 16. Name plate
- 18. Usage (Purpose)

### Accessories / Dimensions

#### Capacitor Trip Device (CTD)

The operating and control power of our VCB is DC power in standard but AC power can also be used depending on the composition of load equipment and conditions. A Capacitor Trip Device can be installed in addition in order to control the VCB even when there is a commercial power failure.

| Туре                        | CTD-1         | CTD-2         |
|-----------------------------|---------------|---------------|
| Rated Input Voltage         | AC 100 / 120V | AC 200 / 220V |
| Rated Output Voltage        | DC 130 / 150V | DC 240 / 260V |
| Max. Discharge Holding Time | 5min          | 5min          |





#### Position Display Switch

It is a switch to indicate whether a draw-out type VCB that uses a draw-out unit is in the connecting position or test position in remote and this is installed in the draw-out unit of the VCB.

| Standard<br>Auxiliaries | Туре                          | Fixing Device | Charging<br>Handle | Draw-In/Out<br>Handle | Control<br>Circuit<br>Connecting<br>Cable | Remarks                         |
|-------------------------|-------------------------------|---------------|--------------------|-----------------------|-------------------------------------------|---------------------------------|
|                         | Fixed Type(N)                 | 1 set         | 1                  | 1                     | 1                                         | Connecting cable                |
|                         | Draw-Out Type<br>(E, F, G(H)) | -             | 1                  | 1                     | 1                                         | is 1.5 m ľong,<br>standard type |





#### Draw-Out Type(E/F)

7.2kV 8/12.5kA

20/25kA

7.2/12/17.5kV

(VVB□-xxxxS)



\* However, Shutter Part is not applied to E-Class \* 7.2kV 8/12.5kA Barrier Cover does not apply

| Туре        | Α  | В  | Туре А              |
|-------------|----|----|---------------------|
| VVBN-07408S | 6  | 40 | <b>WBN-12625S</b> 6 |
| VVBN-07612S | 6  | 40 | VVBN-12125S 15      |
| VVBN-07620S | 6  | 40 | VVBN-17625S 6       |
| VVBN-07120S | 15 | 60 | VVBN-17125S 15      |
| VVBN-07625S | 6  | 40 |                     |
| VVBN-07125S | 15 | 60 |                     |

40

60

40

60

Note. G(Bushing type) will be released in 2018.

### Dimensions

B1-14



Draw-Out Type(E/F)



\* However, Shutter Part is not applied to E-Class



B1-15

### **Dimensions**





| _           | 2    | 30 | 23      | 30 |                                         |
|-------------|------|----|---------|----|-----------------------------------------|
| 1 + + +     | Ð    |    |         |    | +++++++++++++++++++++++++++++++++++++++ |
| +<br>+<br>+ | Ð    |    |         |    | +++                                     |
|             | <br> | 60 | 90<br>1 |    |                                         |
|             |      | 60 | **      |    |                                         |

| Туре       | А   | В   | С  |
|------------|-----|-----|----|
| VVBG-6620M | 231 | 376 | 6  |
| VVBG-6625M | 231 | 376 | 6  |
| VVBG-6120M | 231 | 376 | 10 |
| VVBG-6125M | 231 | 376 | 10 |
| VVBG-6225M | 255 | 364 | 20 |

Note. When ordering, specify whether it is for the upper part or lower part



С

97

167

97



B1-17

(VVB□-xxxxM) 556 Countrol plug 180 180 213 35 Countrol plug m Г ٦ Charge/Discharge Charge hole 220 ¢ F മ Г ¢ Close button Counter 359 Ц Trip button ON/OFF Indicator ¢ € (+ 4-Ø13 Mounting hole 100 600 200 С 650 490.6 <u>4-Ø13</u> 40 25 6-Ø13 50 50 30 В Туре Α 100 VVBN-6140M 670 12 <u>100</u> VVBN-6240M 670 25 1250 / 2000A Terminal 3150A Terminal VVBN-6340M 760 32

Draw-Out Type(E/F)

Fixed Type(N)

7.2kV 40kA







| Туре       | А   | В   |
|------------|-----|-----|
| VVB□-6140M | 358 | 231 |
| VVBD-6240M | 358 | 260 |
| VVBD-6340M | 358 | 260 |



B1-18



#### Unit Type (G Class+MOC / TOC+CT mount in Front)



| Туре        | А    | В   | С   |
|-------------|------|-----|-----|
| VVBG-07140M | 1388 | 358 | 231 |
| VVBG-07240M | 1323 | 348 | 260 |
| VVBG-07340M | 1323 | 348 | 260 |







| 630A Terminal | 1250/2000A<br>Terminal | Earthing Terminal |
|---------------|------------------------|-------------------|

| Туре       | Α  | В     | С   |
|------------|----|-------|-----|
| KVAD-1625M | 12 | 365.2 | 268 |
| KVAD-1125M | 12 | 365.2 | 268 |
| KVAD-1225M | 25 | 384.2 | 249 |

\* However, Shutter Part is not applied to E-Class

40 20

### **Dimensions**

Bushing Type(G)











Earth Terminal

| Туре      | А  | В     | С   |
|-----------|----|-------|-----|
| 630/1250A | 12 | 365.2 | 268 |
| 2000A     | 15 | 384.2 | 249 |



12/17.5kV 40kA 1250A/ 2000A/3150A (VVBC-xxxxM)



### **Dimensions**





#### Draw-Out Type (E/F Class)





| Туре       | Α   | В   | С   | Application                      |
|------------|-----|-----|-----|----------------------------------|
|            | 250 | 766 | 806 | Switchboard phase distance : 250 |
| VVDL-2013M | 300 | 880 | 920 | Switchboard phase distance : 300 |



Draw-Out Type (E/F Class)



\* However, Shutter Part is not applied to E-Class

B1-23

### **Dimensions**




G Class Cradle



## **Dimensions**



Draw-Out Type (E/F Class)





itti

 $\oplus$ 

550

**)** %

1,200A Terminal [Detail 'A']

2-M12 TAP

9-Ø13 hole

170

A

550

1763

29

\<u>Ø11</u>

4-M12 TAP

183

্ৰি প্ৰ

2,000A Terminal [Detail 'A']

1390

550

93

550

Vacuum Circuit Breakers

### **Dimensions**

36/38kV 31.5/40kA (VVBG-xxxxM)

#### G Class Cradle







"A" Part Detail



"B" Part Detail



| Туре        | Diameter |
|-------------|----------|
| VVAN-38140M | Ø50      |
| VVAN-38240M | Ø50      |
| VVAN-38340M | Ø79      |

B1

## **Dimensions**

G Class Cradle

38kV 40kA (VVAG-xxxxM)

2-1/2"-13 thread 28.5 Ø50 : ٢ Terminal Detail 1200/2000A 570 4-1/2"-13 thread <u>Ø79</u> 38 38 Terminal Detail 3000A 425 425 425 221.5 Refer to Terminal Details 285 285 + 1902€ ŧ 0 658.5 Î 19.5 0 T. -Ø14 (.) 0 0 40 110 460 460 460 1634 306.5 1940.5 4-M12 Mounting holes Spring charge/ Discharge Indicator ام ما

۲

1369.5

| Туре        | Diameter |
|-------------|----------|
| VVAG-38140M | Ø50      |
| VVAG-38240M | Ø50      |
| VVAG-38340M | Ø79      |
|             |          |







For Outdoor use 25.8kV 25kA (KVAX Type)

345.7

B<sub>1</sub>

## **Dimensions**

For Outdoor use 25.8kV 40kA (VVBX Type)



A-A' Section View

| Туре        | Standard        | Rated<br>Voltage<br>(kV) | Rated<br>Current<br>(A) | Rated<br>Breaking<br>Current<br>(kA) | Impulse<br>Withstand<br>Testing<br>Voltage<br>(kV) | Weight<br>(kg) | 1 |
|-------------|-----------------|--------------------------|-------------------------|--------------------------------------|----------------------------------------------------|----------------|---|
| VVBX-25640M |                 | 25.8                     | 600                     | 40                                   | 150                                                | 1850           |   |
| VVBX-25140M | ES-5925<br>0001 | 25.8                     | 1200                    | 40                                   | 150                                                | 1900           | N |
| VVBX-25240M |                 | 25.8                     | 2000                    | 40                                   | 150                                                | 2000           |   |
| VVBX-25340M |                 | 25.8                     | 3000                    | 40                                   | 150                                                | 2100           |   |

| Туре                                  | Α     | В      | Note  |  |  |
|---------------------------------------|-------|--------|-------|--|--|
| VVBX-25640M                           | 558.5 | 2639.5 | 600A  |  |  |
| VVBX-25140M                           | 558.5 | 2639.5 | 1200A |  |  |
| VVBX-25240M                           | 558.5 | 2639.5 | 2000A |  |  |
| VVBX-25340M 268.5 2709.5 3000A        |       |        |       |  |  |
| Note. Dimension tolerance : $\pm 5\%$ |       |        |       |  |  |

#### For Outdoor use 36kV 25kA 1250A (VVBX-xxxxM)





Upper Terminal 1250A





Front View

Inner Side View

1512

1582 1754.4

Rear View

#### B1-34

## **Dimensions / Control Circuit Diagrams**







B1-35

## **Control Circuit Diagrams**







(52T

<del>ک</del>

Open operation

ï ò °12 °14 <u>16</u> 'n

4NO 6NO

Auxiliary contact NO

°22 24 28 130

4NC 6NC Auxiliary contact NC



LS2

(52C)

4

(52Z)

(52N

6

LS1

B1-37

## **Control Circuit Diagrams**

38kV 40kA

## DC Circuit



#### AC Circuit











4. Not of toc if not(test , run) VCB state of blocking

contact are all a, b

## **Control Circuit Diagrams**

For Outdoor use 25.8kV 25kA





#### For Outdoor use 25.8kV 40kA

## **Control Circuit Diagrams**

For Outdoor use 36kV 25kA





#### For Nuclear Power Plant

B1-43

B<sub>1</sub>



# B2 Load Break Switches

#### CONTENTS

| Features                              | B2-02 |
|---------------------------------------|-------|
| Ratings                               | B2-04 |
| Accessories ·····                     | B2-06 |
| Installation Method & Structure       | B2-08 |
| Control Circuit Diagrams & Dimensions | B2-10 |
| Fuse Selection Criterias              | B2-12 |



# Load Break Switches LBS



VITZRO EM Load Break Switch is a product developed from the previous model E3-Class and manufactured based on the 100A fuse-combined type test, which displays an excellent breaking performance and safety. In addition, it is a user-friendly, innovative premium-type product with various protection functions.

#### Certifications

It is successfully internationalized based on the KERI development test for the first time in the country.

- IEC62271-105 (Switch-Fuse)
- IEC60265-1 (Load Break Switch)
- Reference Standard : KSC4615



E3 Class LBS product with the best performance in the country is the first one to be manufactured by VITZRO EM.



100A Fuse Combination Type LBS that requires 3 times the existing 63A or below is developed to expand the transformer protection range up to 100A.



Maximum Fuse Capacity of Fuse Combination Type LBS.



Transfer Current Breaking Capability of LBS based on Fuse Capacity.

## Ratings

E3 Class High-Performance New Model



#### Standard Type

| Туре                                        |                       |                                                             | LBS Standard Type    |              |  |
|---------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------|--------------|--|
| Product Type                                |                       |                                                             | VTL 24/630A1         | VTL 24/630M1 |  |
| Operation Method                            |                       |                                                             | Electrically-Powered | Manual       |  |
| Existence of Fuse                           |                       |                                                             | N                    | 0            |  |
| Rated Voltage                               |                       |                                                             | 24 kV                |              |  |
| Rated Current                               |                       |                                                             | 630                  | A            |  |
| Switch Class (IEC St                        | andard)               |                                                             | E3, M1               | Class        |  |
| Poles                                       |                       |                                                             | 3 P                  | ble          |  |
| Rated Frequency                             |                       |                                                             | AC 6                 | OHz          |  |
| Rated Short Time W                          | /ithstand Current     |                                                             | 20kA/                | 1sec         |  |
| Rated Making Curre                          | ent                   |                                                             | 52 k                 | Ар           |  |
| Power Frequency                             | Between Earth         |                                                             | 50kV/                | 1 min        |  |
| Withstand Voltage                           | Between Pole          |                                                             | 60kV/                | 1 min        |  |
| Impulse Withstand                           | Between Earth         |                                                             | 125kVp               |              |  |
| Voltage                                     | Between Pole          |                                                             | 145kVp               |              |  |
|                                             | Load Current          | 630A                                                        | 100 times            |              |  |
|                                             | Load Current          | 31.5A                                                       | 20 times             |              |  |
| Number of                                   | Loop Current          | 630A                                                        | 20 times             |              |  |
| Switching                                   | Cable                 | 31.5A                                                       | 10 times             |              |  |
|                                             | Charging Current      | 9.45A                                                       | 10 tir               | nes          |  |
|                                             | Line Charging Current | 1.5A                                                        | 10 times             |              |  |
| No-load Switching F                         | Performance           |                                                             | 1,000 times          |              |  |
| Rated Breaking Cur                          | rent                  |                                                             | -                    |              |  |
| Rated Transfer Current                      |                       | -                                                           |                      |              |  |
| Rated Current for Fuse (Fuse-Mounting Type) |                       | N/A                                                         |                      |              |  |
| Rated Control Voltage                       |                       | DC 110V / AC 110, 220V                                      | -                    |              |  |
| Rated Control Current                       |                       | 5A -                                                        |                      |              |  |
| Manual Operating Cable Length               |                       | Standard 2.0m (Selection 1.5/1.8m)                          |                      |              |  |
| Weight                                      |                       |                                                             | 68 kg                | 70 kg        |  |
| Certificate & Approval                      |                       | IEC62271-103(IEC60265-1), IEC62271-105, IEC60282-1, KSC4615 |                      |              |  |

## E3 Class High-Performance New Model



Fuse-Mounting Type

| Туре                                        |                       |                                                              | LBS Fuse-Mounting Type             |                 |  |
|---------------------------------------------|-----------------------|--------------------------------------------------------------|------------------------------------|-----------------|--|
| Product Type                                |                       |                                                              | VTLF 24/630A1                      | VTLF 24/630M1   |  |
| <b>Operation Method</b>                     |                       |                                                              | Electrically-Powered               | Manual          |  |
| Existence of Fuse                           |                       |                                                              | Yes                                |                 |  |
| Rated Voltage                               |                       |                                                              | 24 kV                              |                 |  |
| Rated Current                               |                       |                                                              | Switch 630A/Fus                    | e Capacity 100A |  |
| Switch Class (IEC St                        | tandard)              |                                                              | E3, M1                             | Class           |  |
| Poles                                       |                       |                                                              | 3 Pc                               | ble             |  |
| Rated Frequency                             |                       |                                                              | AC 6                               | OHz             |  |
| Rated Short Time W                          | /ithstand Current     |                                                              | -                                  |                 |  |
| Rated Making Curre                          | ent                   |                                                              | 1041                               | кАр             |  |
| Power Frequency                             | Between Earth         |                                                              | 50kV/                              | 1 min           |  |
| Withstand Voltage                           | Between Pole          |                                                              | 60kV/1min                          |                 |  |
| Impulse Withstand                           | Between Earth         |                                                              | 125kVp                             |                 |  |
| Voltage                                     | Between Pole          |                                                              | 145kVp                             |                 |  |
|                                             | Load Current          | 630A                                                         | 100 times                          |                 |  |
|                                             | Loud ourrent          | 31.5A                                                        | 20 times                           |                 |  |
| Number of                                   | Loop Current          | 630A                                                         | 20 times                           |                 |  |
| Switching                                   | Cable                 | 31.5A                                                        | 10 times                           |                 |  |
|                                             | Charging Current      | 9.45A                                                        | 10 times                           |                 |  |
|                                             | Line Charging Current | 1.5A                                                         | 10 times                           |                 |  |
| No-load Switching F                         | Performance           |                                                              | 1,000 times                        |                 |  |
| Rated Breaking Cur                          | rent                  |                                                              | 40 kArms                           |                 |  |
| Rated Transfer Cur                          | rent                  |                                                              | 1250Arms                           |                 |  |
| Rated Current for Fuse (Fuse-Mounting Type) |                       | Mountable up to 100A<br>1/5/10/16/20/25/31.5/40/50/63/80/100 |                                    |                 |  |
| Rated Control Volta                         | ge                    |                                                              | DC 110V / AC 110, 220V             | -               |  |
| Rated Control Current                       |                       | 5A -                                                         |                                    |                 |  |
| Manual Operating C                          | Cable Length          |                                                              | Standard 2.0m (Selection 1.5/1.8m) |                 |  |
| Weight                                      |                       |                                                              | 92kg                               | 88 kg           |  |
| Certificate & Approval                      |                       | IEC62271-103(IEC60265-1), IEC62271-105, IEC60282-1, KSC4615  |                                    |                 |  |

### Accessories

#### Accessories

#### **Motor Driven Actuator**

It is used for remote ON-OFF control and the standard rated voltage is DC 110V. AC 110V/AC 220V are also possible when ordered.

#### Manual Remote Operating Device

It is a device for manual operation at the panel door and it consists of a cable and a manual operating handle.

Cable Length: Standard 2.0 m (Option 1.5/2.6m)

#### **Auxiliary Contact**

It is a contact operated based on the operating status of the main contact of switch and it is used to display the status of the switch and to control it. 2a2b is the standard but it can be added depending on the order.

#### Voltage Trip Device

It is equipped with a shunt coil which enables a prompt Trip operation using a relay signal when a failure occurs.

#### **Fuse Melting Trip Device**

It performs a trip operation in order to prevent the open-phase operation that is generated when 1 phase fuse of 3 phases is melted due to a failure. It ensures an accurate and prompt operation due to the mechanical link.

#### Fuse Melting Display Contact

It is equipped with 1a contact in order to monitor the fuse melting in remote (F1-F2).

| Ρ          | Ν          | С  | Т          | F1             |
|------------|------------|----|------------|----------------|
| <b>A</b> 1 | Аз         | Bı | Вз         | F <sub>2</sub> |
| <b>A</b> 2 | <b>A</b> 4 | B2 | <b>B</b> 4 |                |











**Fuse Melting Display Contact** 

#### 24/25.8kV Fuse Link



| Rated               | Rated         | Rated     | Rated Max.      | Rated Min.     | External D | Weight    |      |
|---------------------|---------------|-----------|-----------------|----------------|------------|-----------|------|
| Voltage Nar<br>[kV] | Name of Model | In<br>[A] | Current<br>[kA] | Current<br>[A] | e<br>[mm]  | d<br>[mm] | [kg] |
|                     | VTHF24001     | 1         |                 | 5×ln           | 442        |           |      |
|                     | VTHF24005     | 5         |                 |                |            |           |      |
|                     | VTHF24010     | 10        | 10              |                |            |           |      |
|                     | VTHF24016     | 16        |                 |                |            | 56        | 2.3  |
|                     | VTHF24020     | 20        |                 |                |            |           |      |
| 24                  | VTHF24025     | 25        |                 |                |            |           |      |
|                     | VTHF24032     | 31.5      | 40              |                |            |           |      |
|                     | VTHF24040     | 40        |                 |                |            |           |      |
|                     | VTHF24050     | 50        |                 |                |            | 45        | 2.1  |
|                     | VTHF24063     | 63        |                 |                |            | 65        | 3.1  |
|                     | VTHF24080     | 80        |                 |                |            |           |      |
| 25.8                | VTHF25100     | 100       |                 |                |            | 78        | 4.1  |

#### Example of Fuse-Mounting Type LBS

The circuit on the right is the power receiving method based on the standard connection diagram on the special medium-voltage, power-receiving equipment of regulated chapter 7, figure 7-3.

The rated current of the power fuse is selected considering the capacity of power-receiving TR and protective coordination with the OCR. Especially, LBS of our company is equipped with a fuse-melting trip device that enables an automatic tripping of LBS when the 1-phase fuse is melted due to the short circuit and overcurrent. It can be promptly and accurately interrupted in case of any failures.



**Body of LBS** 

## **Installing Method & Structure**



\* Check whether the mounting part is flat so that LBS is installed without a twist.



#### Cable

- The standard length is 2.0 m and it can be manufactured in 1.5 m/1.8 m when ordered.
- The cable operates smoothly if it maintains a sufficient curvature radius of R150 or above.
- It is structured to operate ON-OFF manually using the cable in one direction (right-turn).
- Use it by fixing the cable tie towards the inner wall of panel considering the insulation distance.
- Use an exclusive handle that is supplied separately for the manual operation.



Configuration

- Base Frame
- Ø Support Insulator
- 8 Load Terminal
- 4 Arcing Blade
- 6 Main Blade
- 6 Line Terminal
- 7 Arc Nozzle
- 8 Fixed Main Contact
- Fixed Support Insulator
- Operating Rod
- Operating Mechanism
- Manual Operation Cable
- 68 Geared Motor
- 🔞 Manual Handle
- Support Insulator
- 🔞 Load Terminal
- Current limiting Fuse
- 🔞 Fuse Trip Device

## **Control Circuit Diagrams & Dimensions**







Fuse-Mounting Type (Electrically-Powered/Manual)





8

## **Fuse Selection Criterias**



#### Fuse Selection Criteria for each purpose



#### Power Fuse for Transformer Circuit Protection

| Dated Valtage [1/V] | Transformer Rate | Applied Europ Link |                   |
|---------------------|------------------|--------------------|-------------------|
| Raled Vollage[KV]   | 1Ø               | 3Ø                 | Applied Fuse Link |
|                     | 4~8              | 7 ~ 15             | VTHF24001         |
|                     | 20 ~ 44          | 36 ~ 76            | VTHF24005         |
|                     | 42 ~ 92          | 75 ~ 158           | VTHF24010         |
|                     | 81 ~ 167         | 141 ~ 276          | VTHF24016         |
| ~                   | 102 ~ 208        | 176 ~ 344          | VTHF24020         |
|                     | 127 ~ 260        | 220 ~ 431          | VTHF24025         |
|                     | 160 ~ 328        | 264 ~ 540          | VTHF24032         |
| 24                  | 262 ~ 539        | 466 ~ 990          | VTHF24040         |
|                     | 347 ~ 716        | 600 ~ 1238         | VTHF24050         |
|                     | 416 ~ 916        | 743 ~ 1585         | VTHF24063         |
|                     | 573 ~ 1145       | 990 ~ 1981         | VTHF24080         |
|                     | 916 ~ 1527       | 1585 ~ 2641        | VTHF25100         |
|                     | 1301 ~ 1908      | 2251 ~ 3301        | VTHF24125         |
|                     | 2036 ~ 2443      | 3522 ~ 4226        | VTHF24160         |

#### **Detailed Selecting Conditions**

**Power Fuse for Capacitor Circuit Protection** 

- 1. The inrush current of transformer is selected by assuming that it is 10 times the transformer full load current for 0.1 second.
- 2. The rated current of fuse is selected so that it can continuously conduct 1.5 times~2 times the transformer rated current.
- 3. The transformer fuse is assumed and selected so that it can interrupt at 25 times of the transformer rated current within 2 seconds in case of a secondary short circuit.

#### Fuse Selection Criteria for each purpose



| Rated Voltage [kV] | Constant | Capacitor Rated Capacity [kVA] | Applied Fuse Link |
|--------------------|----------|--------------------------------|-------------------|
|                    |          | ~ 12                           | VTHF24001         |
|                    |          | 25 ~ 53                        | VTHF24005         |
|                    |          | 53 ~ 86                        | VTHF24010         |
|                    |          | 86 ~ 154                       | VTHF24016         |
|                    |          | 154 ~ 209                      | VTHF24020         |
|                    | 3Ø       | 209 ~ 261                      | VTHF24025         |
|                    |          | 261 ~ 329                      | VTHF24032         |
| 24                 |          | 329 ~ 480                      | VTHF24040         |
|                    |          | 480 ~ 600                      | VTHF24050         |
|                    |          | 600 ~ 756                      | VTHF24063         |
|                    |          | 756 ~ 1200                     | VTHF24080         |
|                    |          | 1200 ~ 1846                    | VTHF25100         |
|                    |          | 1846 ~ 2500                    | VTHF24125         |
|                    |          | 2500 ~ 3200                    | VTHF24160         |
|                    |          | 3200 ~ 4000                    | VTHF24200         |

#### **Detailed Selecting Conditions**

- 1. The inrush current of Capacitor is selected by assuming that there is a conducting at 71 times of the Capacitor rated current for 0.002 second.
- 2. The rated current of fuse is selected so that it can continuously conduct 1.5 times the Capacitor rated current.
- 3. The transformer fuse is assumed and selected so that it can interrupt at 25 times of the transformer rated current within 2 seconds in case of a secondary short circuit.





#### CONTENTS

| -eatures                              | B3-02 |
|---------------------------------------|-------|
| Ratings                               | B3-04 |
| Performance & Installation/Dimensions | B3-06 |

## Automatic Section Switches 25.8kV Automatic Section Switches

VITZRO EM Automatic Interrupting Section Switch is a switch applied with the first Air-Puffer type arc extinguishing structure and the base insulator type C.T. It is easy to install and operate the panel and it is a light-weight, compact product in the country equipped with the full protection function for the lightning surge of controller. It is possible to install ASS, LA, PF and MOF inside one panel. By using the breaking part that is same as our LBS which is highly recognized among our customers and the operation method, it doubled the high-performance and high-reliability.


### Utility

It was internationalized and improved with the user's compatibility.

- It is a switch applied with the first Air-Puffer type arc extinguishing structure and the base insulator type C.T. It is easy to install and operate the panel and it is a light-weight, compact product in the country equipped with the full protection function for the lightning surge of controller.
- The faults of primary circuit breaker and bus faults do not influence the KEPCO lines so KEPCO can reduce the power failure time due to the faults of received organ.
- There is a disconnecting function (distinguishable by the naked eyes) when performing the maintenance or detailed inspection to prevent the safety accidents.

### Convenience

It improves the safety and convenience of users.

- ASS, LA, PF and MOF can be installed in the Panel 1 side
- It is possible to easily install the manual operating handle of the controller and flexible type in the front panel.

### Combination

- Polymer-type lightning arrestor and current limit type power fuse are combined to reduce the size of the distribution panel which cuts down the cost.
- It is easy to install and carry out the maintenance work for the lightning arrestor and fuse.
- It is easy to connect to the earth terminal of panel for it is equipped with the earth terminal of lightning arrestor.

### Safety

It greatly improves the safety and quality by applying an excellent breaking function.

• By using the breaking part that is same as our LBS which is highly recognized among our customers and the operation method, it doubled the high-performance and high-reliability.

It ensures the safety of users by adopting the insulating materials.

- Use of Excellent Insulator
- By using a support insulator molded by polymer concrete which is an advanced insulating material that our company retains a patent for, it maintains the dielectric strength even at poor operating conditions since its electrical and mechanical strength and arc resistance are superior.

**B**<sub>3</sub>

### Ratings

Ratings

|                               |                                                   | Time                                     | VAS-A-A22                                         | VAS-A-A31                                    |  |  |
|-------------------------------|---------------------------------------------------|------------------------------------------|---------------------------------------------------|----------------------------------------------|--|--|
|                               |                                                   | туре                                     | Standard Type                                     | L/A+P/F Combination Type                     |  |  |
| Operation M                   | lethod                                            |                                          | Motor/Manual Operation                            |                                              |  |  |
| Rated Voltag                  | ge (kV)                                           |                                          |                                                   | 25.8                                         |  |  |
| Rated Curre                   | ent (A)                                           |                                          |                                                   | 200                                          |  |  |
| Rated Frequ                   | uency (Hz                                         | 2)                                       |                                                   | 60                                           |  |  |
| Damas                         | Between Conducting Part & Earth (kV)              |                                          |                                                   | 50 (1 min)                                   |  |  |
| Frequency                     | Betwe                                             | en Fault Conducting Parts (kV)           |                                                   | 50 (1 min)                                   |  |  |
| Withstand<br>Voltage          | Betwe                                             | en In-phase Terminals (kV)               |                                                   | 60 (1 min)                                   |  |  |
| rollage                       | Betwee                                            | n Operating Circuit & Terminal (kV)      |                                                   | 2 (1 min)                                    |  |  |
|                               | Betwee                                            | en Conducting Part & Earth (kV)          |                                                   | 125                                          |  |  |
| Impulse                       | Betwe                                             | en Fault Conducting Parts (kV)           |                                                   | 125                                          |  |  |
| Withstand                     | Betwe                                             | en In-phase Terminals (kV)               | 145                                               |                                              |  |  |
| voltage                       | Voltage Between Operating Circuit & Terminal (kV) |                                          | 6                                                 |                                              |  |  |
|                               | SWC (                                             | <v)< th=""><th></th><th>2.5/4</th></v)<> |                                                   | 2.5/4                                        |  |  |
|                               |                                                   |                                          | 15/Instantaneous (Asym.)                          |                                              |  |  |
| Rated Short                   | Time Wi                                           | thstand Current (kA)                     | 10/1 sec (Sym.)                                   |                                              |  |  |
|                               |                                                   |                                          | 3.5/10 sec (Sym.)                                 |                                              |  |  |
| Rated Short                   | Circuit N                                         | laking Current (kA)                      | 15 (Asym.)                                        |                                              |  |  |
| Rated Break                   | king Curr                                         | rent (A)                                 | 800                                               |                                              |  |  |
| Min.                          |                                                   | Phase (A)                                | 10/20/3                                           | 30/50/70/100/140/200/BLOCK                   |  |  |
| Operating C                   | urrent                                            | Ground (A)                               | 5/10/                                             | 15/25/35/50/70/100/BYPASS                    |  |  |
| Max. Lock C                   | urrent (/                                         | 7)                                       |                                                   | 800                                          |  |  |
| Operating C                   | ircuit Co                                         | ntrol Voltage (V)                        | DC 24 (                                           | AC 220V : For Battery Charging)              |  |  |
| Inrush Curr                   | ent Supp                                          | ression (Sec)                            |                                                   | 0.5/1.0                                      |  |  |
| Manual Operating Cable Length |                                                   |                                          | St                                                | andard 2.6m (Other 2.0m)                     |  |  |
| L/A & P/F                     |                                                   |                                          | Excluded Included                                 |                                              |  |  |
| L/A Rated Current (kA)        |                                                   |                                          | Non 5                                             |                                              |  |  |
| P/F Rated C                   | urrent (A                                         | Ŋ                                        | Non                                               | 1/5/10/16/20/25/31.5/40/50/63/80/100/125/160 |  |  |
| Total Weigh                   | t (kg)                                            |                                          | 90                                                | 110                                          |  |  |
| Certificate 8                 | Approv                                            | al                                       | KEMC 1126 (2007.8), Specification of Manufacturer |                                              |  |  |

This switch is used at a place with temperature ranging from -25°C to +50°C and altitude of 1000m or under.
 Maximum Load: Standard Load 4000kV, Special Load 2000kVA

Ordering Information

| VAS  |             | Α                              |     | A22                                             |   | Н                                       |   | Α                                |   | 1                  |
|------|-------------|--------------------------------|-----|-------------------------------------------------|---|-----------------------------------------|---|----------------------------------|---|--------------------|
|      |             |                                |     |                                                 |   |                                         | _ |                                  |   |                    |
| Туре | Inst<br>Cor | allation Method mbination Type |     | Operation Mode                                  |   | Installation Method<br>Combination Type |   | Manual Operating<br>Cable Length |   | ixiliary<br>ontact |
| VAS  | Α           | Motor-Driven<br>Operation      | A21 | Standard Type<br>(Knife Method)                 | Н | Horizontal<br>Installation              | Α | 1.0 m                            | 1 | 1a1b               |
|      | М           | Manual<br>Operation            | A31 | A31 P/F, L/A Single-Body Type                   |   | Vertical<br>Installation                | B | 1.2m                             |   |                    |
|      |             |                                | A41 | Standard Type<br>(Perpetual Method)             |   |                                         | D | 1.8m                             |   |                    |
|      |             |                                | A42 | P/F, L/A Single-Body Type<br>(Perpetual Method) |   |                                         | E | 2.0m                             |   |                    |
|      |             |                                | A43 | P/F, L/A Single-Body Type<br>(Perpetual Method) |   |                                         | F | 2.6 m                            |   |                    |

B3-05

### Configuration



### Start Lamp

Lamp to check normal/abnormal operation

#### 2 Lock Lamp

Lamp to check over-current inflow of 800A or more

Operating Phase Display Lamp Displays a fault phase in case of a failure

#### Operation Phase Current Set Button

Operating current is set based on the equipment capacity % Refer to Table1 for the set value (10/20/30/50/70/100/140/200/LOCK)

#### Ground Current Set Button Ground current is set based on the

equipment capacity % Refer to Table1 for the set value (5/10/15/25/35/50/70/100/BY-PASS)

#### Inrush Current Suppression Time Correcting Tab Tab to set the time to prevent malfunctioning due to the inrush current (0.5/1.0 sec)

### ØBAT State Display Lamp

Battery State (Charging, Charging Completed)

#### Olosing/Opening Button

Execute closing and opening of ASS with One Touch

#### Emergency Stop Button

Button to stop the closing in urgent when the closing operation is being operated

Test Button

ASS is opened when pressed for about 0.5 second for the Self Test of Controller \* Note: Do not use during an operation. Use only for testing during the maintenance and inspections.

#### Lamp Test Button

Test Button to check the fault state of all lamps

#### 🕲 Reset Button

Reset all states of controller to the normal states by pressing the Reset Button after the controller is operated or after the maintenance and inspection of the controller

#### Ourrent Set Button

Button to set the phase current and ground current

### Fault Check Button

Button to check the fault current and phase

### **Performance & Installation / Dimensions**

Performance & Installation

### Performance

### T-C Curve

 Minimum Operating Current Correction A controller tap corrects the minimum operating current of phase and ground. (The ground current is set as 50% of the phase current.)
 Contract Capacity(kW)

 $\frac{\text{Contract Capacity(kW)}}{22.9 \text{kV} \times \sqrt{3}} \times 2\text{-}3 \text{ times}$ 

(2) No-Load Switching : 1,000 times

### Installation

- Operation Check Connect the cable (discuss it with the manufacturer and the user: standard 4 m) and check to identify errors by performing the opening and closing operations for 2~3 times manually and automatically.
- (2) Precautions on Installation After it is unwrapped, check to see any transformations, damages, leakages and so forth and be careful of damages to bushing during the installation.



#### Table on Selection of Phase Current & Ground Current

| Transformer<br>Capacity (KVA) | Phase Current<br>Tab (A) | Ground Current<br>Tab (A) | Calculated Phase<br>Current (A) | Calculated Ground<br>Current (A) |
|-------------------------------|--------------------------|---------------------------|---------------------------------|----------------------------------|
| 0~100                         | 10                       | 5                         | 0~7.5                           | 0~3.8                            |
| 101~250                       | 20                       | 10                        | 7.5~18.75                       | 3.8~9.4                          |
| 251~350                       | 30                       | 15                        | 18.75~26.25                     | 9.4~13.2                         |
| 351~600                       | 50                       | 25                        | 26.25~45                        | 13.2~22.5                        |
| 601~900                       | 70                       | 35                        | 45~68                           | 22.5~34                          |
| 901~1000                      | 100                      | 50                        | 68~75                           | 34~37.5                          |
| 1001~1500                     | 140                      | 70                        | 75~113                          | 37.5~56.5                        |
| 1501~2000                     | 200                      | 100                       | 113~150                         | 56.5~75                          |

Remarks

· Tab Correcting Current = (Transformer Capacity/( $\sqrt{3}$ ×22.9[kV]))×3

· Correct the ground current to 1/2 of the phase current

 $\cdot$  Block : Opening suppressing tab based on the phase current

 $\cdot$  By-pass : Opening suppressing tab based on the ground current

B3-07



### **Dimensions / Certifications**









## B4 Vacuum Contactor Switches

### CONTENTS

| realules                                | D4-02 |
|-----------------------------------------|-------|
| Configuration/Accessories               | B4-06 |
| Ratings & Specifications                | B4-08 |
| Application & Selection/Characteristics | B4-10 |
| Ordering Information & Dimensions       | B4-12 |
| Dimensions                              | B3-13 |
| Control Circuit Diagrams                | B4-19 |



### Vacuum Contactor Switches **Fixed Types**



VITZRO EM Vacuum Contactor Switch is a miniature, high-performance MV VCS. It is highly reliable and stable and easy to use. There are 2 types fixed excitation mode and instantaneous excitation mode that do not require maintenance. It is a switch for medium voltage motor, transformer and Capacitor circuits and it contributes greatly to the modernization and simplification of the equipment.

Its performance was recognized through technology integration and international standard certificates.

• It is a product with the maximum short circuit capacity conforming to the international standard IEC-60470.

It improves the safety by applying an excellent breaking capability and a long-term quality warranty.

- The arc time at all areas of current is generally 0.5 cycle or below. It performs a great breaking capability during the opening and closing of Capacitor bank. The chopped current is less than 1(A) so when interrupting the load current of motor and the exciting current of transformer, a high surge voltage is not generated.
- The mechanical life cycle of fixed excitation mode is 2,500,000 times and that of instantaneous mode is 250,000 times. The electrical life cycle is 250,000 times of the load opening and closing.

It is easy and safe to use with various optional functions.

• There are 4 types of ratings - fixed type, individual draw-out type, draw-out type (standard draw-out type and external draw-out type) and mechanical interlock mounting type - with total of 36 product types. All draw-out types are mounted with a draw-out unit. However, a power fuse is mounted when ordered.

There is enough space due to its compact size and light-weight.

• It is possible to mount a distribution panel with 600 mm width and it can be loaded in 3 columns.

R<sub>4</sub>

### Vacuum Contactor Switches Draw-Out Types



VITZRO EM Vacuum Contactor Switch is a miniature, high-performance MV VCS. It is highly reliable and stable and easy to use. There are 2 types of fixed excitation mode and instantaneous excitation mode that do not require maintenance. It is a switch for medium voltage motor, transformer and Capacitor circuits and it contributed greatly to the modernization and simplification of the equipment.

#### Standard Draw-Out Type

- It is compatible with draw-out type power fuse.
- It can be installed with up to 2 potential transformers.
- A draw-out unit is same as the fuse-mounting type.

### External Draw-Out Type

• It is compact and light-weighted so 3 of them can be loaded based in the circuit breaker within the cubicle and it can save the space. In addition, it is suitable to install an enclosed panel.

#### Individual Draw-Out Type

- The inner width is smaller than that of the standard draw-out type.
- A potential transformer and power fuse cannot be installed.

#### Mechanical Interlock Mounting Type

- It is used for <code>fcommercialj</code> and <code>femergencyj</code> power transfer and <code>fpower</code> failurej and <code>freverse</code> powerj transfer.
- It performs a mechanical interlock of 2 fixed-type contact switches using a connecting bar. (However, use VTS when disconnecting is required.)

### **Configuration / Accessories**





Bus
Barrier
Draw-out unit
Guide rail
Earth

#### Accessories

Our VCS performs the short circuit protection at the power fuse and the general load switching is performed at high-voltage VCS. It is an optimal product as a combination starter. It can install up to 2 short-circuit potential transformers and it is fully equipped with the draw-out unit.

### **Standard Accessories**

| Item Name                            | Quantity | Purpose              | Remarks                                            |
|--------------------------------------|----------|----------------------|----------------------------------------------------|
| Manual Closing Handle                | 1ea/set  | For manual closing   | Mounted when it is an instantaneous excitation mod |
| Control Circuit Connec<br>ting Cable | 1ea/set  | For power connection | Standard Product (1.5m)                            |

The following accessories are supplied based on the requirements of the demanding part.

|                | Item Name                     | Specification / Rating                                                                                          | Remarks                                                                                                                              |
|----------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| м              | Draw-Out Unit                 |                                                                                                                 |                                                                                                                                      |
| ounted outside | Position Detector             | Limit Switch is operated at<br><sup>F</sup> connecting_ and <sup>F</sup> testing /<br>disconnecting_ positions. | Cam and Limit S/W is attached to<br>connecting main unit and draw-out<br>unit and the wire is directly connected<br>to the Limit S/W |
| the Bo         | Capacitor Trip Device         | AC 100 / 110V                                                                                                   |                                                                                                                                      |
| ъф             | Vacuum Checker                | AC 110V                                                                                                         |                                                                                                                                      |
|                | Power Fuse (PF)               | 3.6kV 5 ~ 250A 40kA<br>7.2kV 5 ~ 250A 40kA                                                                      |                                                                                                                                      |
| Mounted        | Silicon Rectifier (Si-Rf)     | For both AC 100 ~ 220V                                                                                          | Single-Phase full wave rectifier mounted with a surge absorber                                                                       |
| on the B       | Potential<br>Transformer (PT) | 3300V / 110V, 100VA<br>6600V / 110V, 100VA                                                                      | PF Fuse mounted, Rating 3.6 / 7.2kV.<br>1A, 40kA                                                                                     |
| ody            | Counter                       | 5 Digits (0-99999)                                                                                              | Mechanical counter                                                                                                                   |
|                | Power Fuse Melting Detector   | Switch (1C contact) mounted                                                                                     | Refer to connection diagram                                                                                                          |

### **Ratings & Specifications**





| Structuro                  |                  |                                              | Individual Type |                                                                                          |          |          |           |           |           |           |           |  |
|----------------------------|------------------|----------------------------------------------|-----------------|------------------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|--|
|                            |                  | Structure                                    |                 |                                                                                          | Fixed    | Туре     |           |           | Draw-0    | Out Type  |           |  |
|                            | Turne            | Fixed Excitation Mode                        |                 | KVP-322E                                                                                 | KVP-342E | KVP-625E | KVP-645E  | KVPD-322E | KVPD-342E | KVPD-625E | KVPD-645E |  |
|                            | туре             | Instantaneous Excitation Mo                  | ode             | KVS-322E                                                                                 | KVS-342E | KVS-625E | KVS-645E  | KVSD-322E | KVSD-342E | KVSD-625E | WCI-645E  |  |
|                            | Ra               | ated Voltage                                 | kV              | 3.3                                                                                      | / 3.6    | 6.6      | 7.2       | 3.3       | / 3.6     | 6.6       | / 7.2     |  |
|                            | Ra               | ted Current                                  | Α               | 200                                                                                      | 400      | 200      | 400       | 200       | 400       | 200       | 400       |  |
|                            | Rate             | ed Frequency                                 | Hz              |                                                                                          | 50,      | 60       |           |           | 50,       | , 60      |           |  |
|                            | Short Circu      | uit Breaking Current                         | kA              |                                                                                          | 2        | 4        |           |           |           | 4         |           |  |
| Sho                        | ort Time         | 2sec                                         | kA              |                                                                                          | 2        | •        |           |           |           | 4         |           |  |
| Cur                        | rent             | 0.5cycle                                     | kA              | 40                                                                                       | 50       | 40       | 50        | 40        | 50        | 40        | 50        |  |
| Wit                        | hstand           | mpulse                                       | kV              | *,                                                                                       | 45       | **       | 60        | *,        | 45        | **        | 60        |  |
| Vol                        | tage             | Power Frequency                              | kV              | 1                                                                                        | 0        | 20 1     |           | 10 20     |           | 20        |           |  |
| 5                          | Mechanical       | Fixed Excitation Mode                        | 10,000<br>times |                                                                                          | 25       | 50       |           |           | 2         | 50        |           |  |
| duran                      | ricenanicat      | Instantaneous Excitation Mode                | 10,000<br>times | 25                                                                                       |          |          |           | 25        |           |           |           |  |
| ы<br>Се                    |                  | Electrical                                   | 10,000<br>times | 25 25                                                                                    |          |          |           |           |           |           |           |  |
| Ope                        | erating          | Closing Coil                                 | ۷               | DC, 24, 48/50, 100/110, 115/125, 200/220, 230/250, ***AC (Single phase) 100/110, 200/220 |          |          |           |           |           |           |           |  |
| Vol                        | tage             | Trip Coil<br>(Instantaneous Excitation Mode) | ۷               | DC, 24, 48/50, 100/110, 115/125, 200/220, 230/250, ***AC (Single phase) 100/110, 200/220 |          |          |           |           |           |           |           |  |
|                            |                  | Auxiliary Contact                            |                 |                                                                                          | 2a       | 2b       |           | 2a2b      |           |           |           |  |
|                            |                  | Rated Voltage                                | kV              | -                                                                                        | -        | -        | -         | -         | -         | -         | -         |  |
| Pow                        | er Fuse          | Rated Current                                | А               | -                                                                                        | -        | -        | -         | -         | -         | -         | -         |  |
|                            |                  | Rated Breaking Current                       | kA              |                                                                                          | -        |          |           |           |           | -         |           |  |
|                            |                  | Motor                                        | kW              | 750                                                                                      | 1500     | 1500     | 3000      | 750       | 1500      | 1500      | 3000      |  |
| Pow<br>Capa                | er Load<br>acity | Transformer                                  | kVA             | 1000                                                                                     | 2000     | 2000     | 4000      | 1000      | 1000      | 2000      | 4000      |  |
|                            |                  | Capacitor                                    | kVA             | 1000                                                                                     | 2000     | 2000     | 4000      | 1000      | 2000      | 2000      | 4000      |  |
| Weig                       | ht (body)        | Fixed Excitation Mode                        | R               | 22                                                                                       | 23       | 22       | 23        | 28        | 29        | 28        | 29        |  |
| Applied Draw-Out Unit Type |                  | kg                                           |                 |                                                                                          |          |          | UVSDE-3-2 | UVSDE-3-4 | UVSDE-6-2 | UVSDE-6-4 |           |  |

(Note) [1] The impulse withstand voltage between phases of in-phase main circuit marked with \* is 30kV.
[2] The impulse withstand voltage between phases of in-phase main circuit marked with \*\* is 45kV.
(3) When the operating voltage (single-phase AC) is marked as \*\*\*, a silicon rectifier should be installed on the VC.
(4) 2 operating and potential transformers can be installed on the draw-out type VC or VC with power fuse.
(5) The maximum weight is measured with 2 operating transformers installed and when the power fuse in the VC is the maximum rated current.



|          |               | Standard Ty      | /pe              |                              | fixed type of    | mechanical      |             |           |  |
|----------|---------------|------------------|------------------|------------------------------|------------------|-----------------|-------------|-----------|--|
|          | Power Fuse Wh | en not installed | l                | Power Fuse when<br>installed |                  | interlock in    | nstallation |           |  |
| KVN-322E | KVN-342E      | KVN-625E         | KVN-645E         |                              | KVPM-322E        | KVPM-342E       | KVPM-625E   | KVPM-645E |  |
| KVR-322E | KVR-342E      | KVR-625E         | KVR-645E         | VVCI-023E-0                  | KVSM-322E        | KVSM-342E       | KVSM-625E   | KVSM-645E |  |
| 3.3 /    | 3.6           | 6.6              | /7.2             | 6.6/7.2                      | 3.3 6.6          |                 |             |           |  |
| 200      | 400           | 200              | 400              | 200                          | 200              | 400             | 200         | 400       |  |
|          | 50,           | 60               |                  | 50, 60                       | 50, 60           |                 |             |           |  |
|          | 2             | 4                |                  | 4                            | 4                |                 |             |           |  |
|          | 6.3(1         | lsec)            |                  | 6.3/1sec                     | 4                |                 |             |           |  |
| 40       | 50            | 40               | 50               | 40                           | 40               | 50              | 40          | 50        |  |
| */       | 5             | **               | 60               | 60                           | */               | 45              | **          | 60        |  |
| 10 20    |               |                  |                  | 20                           | 1                | 0               | 2           | 0         |  |
|          | 25            | 50               |                  | 250                          |                  | 25              | 50          |           |  |
| 25       |               |                  |                  | 25                           |                  | 2               | 5           |           |  |
|          | 2             | 5                |                  | 25                           | 25               |                 |             |           |  |
|          |               | DC, 24, 48/50, 1 | 00/110, 115/125, | 200/220, 230/250, ***AC      | (Single phase) 1 | 00/110, 200/220 |             |           |  |
|          |               | DC, 24, 48/50, 1 | 00/110, 115/125, | 200/220, 230/250, ***AC      | (Single phase) 1 | 00/110, 200/220 |             |           |  |
|          | 2a            | 2b               |                  | 2a2b                         |                  | 2a              | 2b          |           |  |
| -        | -             | -                | -                | -                            | -                | -               | -           | -         |  |
| -        | -             | -                | -                | -                            | -                | -               | -           | -         |  |
| -        |               |                  | -                |                              | -                |                 |             |           |  |
| 750      | 1500          | 1500             | 3000             | 1500                         | 750              | 1500            | 1500        | 3000      |  |
| 1000     | 2000          | 2000             | 4000             | 2000                         | 1000             | 2000            | 2000        | 4000      |  |
| 1000     | 2000          | 2000             | 4000             | 2000                         | 1000             | 2000            | 2000        | 4000      |  |
| 44       | 45            | 44               | 45               | Max.52                       | 45               | 47              | 45          | 47        |  |
| UVSE3-2  | UVSE3-4       | UVSE6-2          | UVSE3-4          | UVSE6-2                      | -                |                 |             |           |  |

### Application & Selection / Characteristics



### 3.6/7.2kV Fuse Link

| External | Name of Model | Rated<br>current In<br>[A] | Rated Max.<br>Breaking Current<br>[kA] | Rated Min.<br>Breaking Current<br>[A] | Weight<br>[kg] |
|----------|---------------|----------------------------|----------------------------------------|---------------------------------------|----------------|
|          | VTHF07010     | 10                         |                                        |                                       |                |
|          | VTHF07020     | 20                         |                                        |                                       |                |
| 7.00     | VTHF07032     | 31.5                       |                                        | 4×In                                  | 1.1            |
| ÅдÅ      | VTHF07040     | 40                         |                                        |                                       |                |
|          | VTHF07050     | 50                         |                                        |                                       |                |
|          | VTHF07063     | 63                         | 50                                     |                                       |                |
|          | VTHF07080     | 80                         |                                        |                                       | 1.4            |
|          | VTHF07100     | 100                        |                                        |                                       |                |
| 3.100    | VTHF07125     | 125                        |                                        |                                       |                |
|          | VTHF07160     | 160                        |                                        |                                       | 2.4            |
|          | VTHF07200     | 200                        |                                        |                                       |                |

### **Characteristics**

|                                                                                   | Closing Breaking                                                                                                   |                                                        |                       | Intermitten                                      |                                  |                                                  |                       |                                                   |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------|-----------------------|---------------------------------------------------|--|
| Standard                                                                          | Closing,<br>Cap                                                                                                    | acity                                                  | Fixed Excitation Mode |                                                  | Instantaneous<br>Excitation Mode |                                                  | Electrical Durability |                                                   |  |
| Standard                                                                          | Range                                                                                                              | Capacity                                               | Class                 | Number of<br>operating<br>cycles<br>(Cycle/time) | Class                            | Number of<br>operating<br>cycles<br>(Cycle/time) | Operations            | Number of<br>Operations<br>(Capacity)             |  |
| IEC-470 (1974)<br>HV AC<br>Contact Switch                                         | AC-4                                                                                                               | Closing :<br>10 times<br>Breaking :<br>8 times         | -                     | 1200                                             | -                                | 300                                              | AC-3                  | 250,000<br>Closing : 6 times<br>Breaking : 1 time |  |
| BS-775 (1976)<br>Contact<br>Switch                                                | AC-4                                                                                                               | Closing :<br>10 times<br>Breaking :<br>8 times         | 10Class               | 1200                                             | Class-3                          | 300                                              | AC-3                  | 250,000<br>Closing : 6 times<br>Breaking : 1 time |  |
| AS-1864 (1976)<br>Electric<br>Contact Switch                                      | AC-4                                                                                                               | Closing :<br>10 times<br>Breaking :<br>8 times         | 10Class               | 1200                                             | Class-3                          | 300                                              | AC-3                  | 250,000<br>Closing : 6 times<br>Breaking : 1 time |  |
| VDE-660                                                                           | AC-4                                                                                                               | Closing :<br>10 times<br>Breaking :<br>8 times         | D1Class               | 1200                                             | Class-3                          | 300                                              | AC-3                  | 250,000<br>Closing : 6 times<br>Breaking : 1 time |  |
| NEMA-ICS<br>(1976)<br>Part : ICS2-<br>324<br>Industrial<br>control and<br>systems | Applied to I<br>(Without Fu<br>2.5kV 17MV<br>5.0kV 35MV<br>Applied to I<br>(With Fuse)<br>2.5kV 150M<br>5.0kV 350M | E1 Class<br>ise)<br>/A<br>/A<br>E2 Class<br>IVA<br>IVA | -                     | 120                                              | -                                | 300                                              | -                     | 250,000<br>Closing : 6 times<br>Breaking : 1 time |  |

### **Breaking Capability**

An arc time is always 0.5 cycle or less. Rapid arc extinguishing and excellent insulation recovery are vital characteristics.

### Capacitor Bank Switching Capability

A Vacuum Valve performs an excellent breaking operation without re-ignition of arc at the capacitor bank circuit that requires the closing/breaking at high recovery voltage and high frequency.

### **Operating Current & Operating Time**

| Туре        |                | Fixed E            | xcitation Mode                     | Instantaneous Excitation Mode |              |  |
|-------------|----------------|--------------------|------------------------------------|-------------------------------|--------------|--|
|             |                | Closing<br>Current | Protective &<br>Supportive Current | Closing Current               | Trip Current |  |
| Operating   | AC/DC 100/110V | 1.6                | 0.35                               | 3.2                           | 1.4          |  |
| Current (Ă) | AC/DC 200/220V | 0.9                | 0.27                               | 1.8                           | 1.3          |  |
| Operating   | Closed Time    |                    | 150                                | 10                            | 100          |  |
| Time (A)    | Opened Time    |                    | 50                                 | 3                             | 0            |  |

### **Ordering Information & Dimensions**

Ordering Information



### How to Display Draw-Out Unit Type







KVPD. 645E

KVSD. 645E

6600V 400A 4kA



440

120

**B**4

### **Dimensions**

**Dimensions** 













### **Dimensions**

Dimensions

### Individual Draw-Out type



Individual Draw-Out Type Shutter Type





Standard Draw-Out Type Shutter Type



### **Dimensions / Control Circuit Diagrams**

External Draw-Out Type **Dimensions** 541 230 581 70 120 310 **⊟#** 6-ø10.5 hole 390 70 358 s | , F Mounting hole position 63 Disconnection 130 120 Connection Barrier between po**l**es 374 Barrier between poles 36.2 312.2 230 \* 28 19 180 378 356.5 224.5 448.4 890 1008 ① Detail run test position VCS bod Ψ5 Unit rail фф. **Ø**∲¶ ② SA detail Applicable to VCS Applicable to VCS Туре Applicable to VCS Туре Applicable to VCS Туре Туре KVN. 322E KVN. 342E KVN. 625E KVN. 645E UVSDE UVSDE UVSDE UVSDE KVR. 322E KVR. 342E KVR. 625E KVR. 645E

3-4S

WCI 625E-6

6-2S

WCI 625E-6

6-4S

WCI 625E-6

WCI 625E-6

3-2S

**Optional parts** 

Position detector
 Surge absorber



### Instantaneous Excitation Mode-AC Operation



# Vacuum Contactor Switches

### **Control Circuit Diagrams**



### Instantaneous Excitation Mode-DC Operation



Fixed Type

Individual Draw-Out Type

Fixed Excitation Mode-AC Operation



### Instantaneous Excitation Mode-AC Operation



### **Control Circuit Diagrams**

Individual **Draw-Out Type** 

### **Fixed Excitation Mode-DC Operation**





### Instantaneous Excitation Mode-DC Operation





### Instantaneous Excitation Mode-AC Operation



Vacuum Contactor Switches

### **Control Circuit Diagrams**



### Instantaneous Excitation Mode-DC Operation





Instantaneous excitation type, 1 power fuse mounted - AC operation





### **Control Circuit Diagrams**





### Instantaneous Excitation Mode, Mechanical Interlock Mounting-AC Operation



The connection of VC main circuit is the same as the normal excitation type



### Instantaneous Excitation Mode, Mechanical Interlock Mounting-DC Operation



### **Control Circuit Diagrams / Certifications**

### **Fixed Type**

The above circuit diagrams show some examples of the operating circuit The connection outside the two-dot chain line is performed in separation with the panel devices. All the auxiliary switches are 2a2b. The operating circuit, auxiliary switch circuit, limit switch circuit of draw-out type interlock device, secondary circuit of potential transformer and power fuse melting display contact are connected using the Connector (CN1, CN2). In case of a DC operation, UVT terminal of the connector is not connected. The limit switch contact (LS) for the draw-out type interlock device is turned 'ON'at connecting position and disconnecting position and turned 'OFF'at intermediate position.

The limit switch of the position detector (designated auxiliary) is not marked on the connection diagram in case of a draw-out unit mounting

| Mark  | Name                                                      | Mark  | Name                                 |
|-------|-----------------------------------------------------------|-------|--------------------------------------|
| VCS   | Medium Voltage Vacuum Contact Switch                      | Si-Rf | Silicon Rectifier                    |
| VCS-F | Medium Voltage Vacuum Contact<br>Switch for Power Failure | SA    | Surge Absorber                       |
| VCS-R | Medium Voltage Vacuum Contact<br>Switch for Reverse Power | F     | Fuse                                 |
| PF    | Power Fuse                                                | LS    | Draw-Out Interlock Device            |
| Т     | Transformer (PT)                                          | FS    | Power Fuse Melting Display           |
| MCC   | Closing Coil                                              | CN    | Connector                            |
| МСН   | Protecting & Supporting Coil                              | МСХ   | Auxiliary Contact Switch for Closing |
| MCT   | Trip Coil                                                 | FC    | Fuse checker                         |
| MC    | Auxiliary Switch                                          |       |                                      |

#### Circuit Diagram Mark




**B**4





#### CONTENTS

| Features                             | B5-02 |
|--------------------------------------|-------|
| Ratings                              | B5-04 |
| Application                          | B5-05 |
| Control Circuit Diagram & Dimensions | B5-10 |



## Vacuum Transfer Switches, VTS 7.2kV, 400/600A



B<sub>5</sub>

B5-03

VITZRO EM Vacuum Transfer Switch uses a vacuum interrupter and BMC barrier that improved the insulation and is built-in with an electrical and mechanical interlock device and an over-current lock device. It is a power transfer switch that can prevent failures due to an interruption faults in case of a short circuit and over-current conduction.

An electrical and mechanical interlock is built-in.

- There are no malfunctions since the transfer device is equipped with the electrical and mechanical interlock.
- It is easy to design since there is no need to consider the electrical and mechanical interlock at outside.

It ensures a long operational cycle and long durability.

- The vacuum interrupter used at the switch part consumes very little contacts and the vacuum cycle is 20 years or more.
- The mechanical part is structured in the minimized solenoid method which is superior in its durability.

It is easy to perform a maintenance work.

• VTS is in a draw-in/out structure which enables to perform various inspections easily and the molded insulation barrier is an open-type that allows easy cleaning and inspection. The transfer operation is carried out by an instantaneous excitation mode and its power is consumed only during the transfer so it is economical.

# Ratings / Application

Ratings

| Туре                |                                            | Fixed Type                               | VTS   | -6N4                                               | VTS                        | -6N6          |               |  |  |  |
|---------------------|--------------------------------------------|------------------------------------------|-------|----------------------------------------------------|----------------------------|---------------|---------------|--|--|--|
|                     |                                            | Draw-Out Type                            | VTS-  | 6N4E                                               | VTS-                       | 6N6E          |               |  |  |  |
| Rated Current       |                                            | Α                                        | 4     | 400 600                                            |                            |               |               |  |  |  |
|                     | Rated Voltage                              | •                                        | kV    | 7.2                                                |                            |               |               |  |  |  |
|                     | Poles                                      |                                          | Р     | 3                                                  |                            |               |               |  |  |  |
|                     | Short Time C                               | urrent(1sec)                             | kA    |                                                    | 12                         | 5             |               |  |  |  |
|                     | Rated Closing                              | g Current                                | kA    |                                                    | 31                         | .5            |               |  |  |  |
|                     | Lock Current                               |                                          | Α     |                                                    | 25                         | 00            |               |  |  |  |
|                     | Operational                                | Rated Current Switch                     | times |                                                    | 10,1                       | 000           |               |  |  |  |
|                     | Cycle                                      | Continuous<br>No-Load Switch             | times |                                                    | 10,1                       | 000           |               |  |  |  |
|                     | Transfer Seq                               | uence                                    |       |                                                    | $A \leftrightarrow off(f)$ | rrip) ↔ B     |               |  |  |  |
|                     |                                            | Main Circuit - Earth                     | kV    |                                                    | 2                          | 2             |               |  |  |  |
|                     | Power<br>Frequency<br>Withstand<br>Voltage | Between Phase-<br>Shifting Main Circuits | kV    | 22                                                 |                            |               |               |  |  |  |
|                     |                                            | Between In - Phase<br>Main Circuits      | kV    | 35                                                 |                            |               |               |  |  |  |
|                     |                                            | Control Circuit - Earth                  | kV    | 2                                                  |                            |               |               |  |  |  |
|                     | Main Circuit - Earth                       |                                          | kV    | 60                                                 |                            |               |               |  |  |  |
|                     | Impulse<br>Withstand                       | Between Phase-<br>Shifting Main Circuits | kV    | 60                                                 |                            |               |               |  |  |  |
|                     | Voltage                                    | Between In - Phase<br>Main Circuits      | kV    | 70                                                 |                            |               |               |  |  |  |
|                     | Operation Mo                               | de                                       |       | Magnetic Operation (Instantaneous Excitation Mode) |                            |               |               |  |  |  |
|                     |                                            | Closing                                  |       | DC 100/110V, 30A or below                          |                            |               |               |  |  |  |
|                     | Operating<br>Power                         | Trip                                     |       |                                                    | DC 100/110V                | , 5A or below |               |  |  |  |
|                     |                                            | Control                                  |       | DC 100/110V, 0.3A or below                         |                            |               |               |  |  |  |
|                     | External Dim                               | ensions & Weight                         |       |                                                    |                            |               |               |  |  |  |
|                     | Weight                                     | Fixed Type                               | kg    | 1:                                                 | 20                         | 1:            | 30            |  |  |  |
|                     | Weight                                     | Draw-Out Type                            | kg    | 1,                                                 | 40                         | 1             | 50            |  |  |  |
|                     |                                            | <u></u>                                  |       | Fixed Type                                         | Draw-Out Type              | Fixed Type    | Draw-Out Type |  |  |  |
|                     | Dimensions                                 |                                          | Н     | 585                                                | 545                        | 585           | 545           |  |  |  |
|                     | (mm)                                       |                                          | W     | 530                                                | 592                        | 530           | 592           |  |  |  |
|                     |                                            |                                          | D     | 700                                                | 870                        | 700           | 870           |  |  |  |
| Reference Standards |                                            |                                          |       | JIS C4605                                          |                            |               |               |  |  |  |



| Comparison on<br>Equipment<br>Application | Туре                           | VTS Type Transfer Switch                                                                                                           | Transfer using Mounting Type Switch                                                                                                 | Two Circuit Breakers                                                                |
|-------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                           | Product<br>Price               | Built-in with an electrical and<br>mechanical interlock,<br>Instantaneous Excitation Mode                                          | Built-in with an electrical and<br>mechanical interlock,<br>Instantaneous Excitation Mode                                           | It requires a mechanical<br>interlock to ensure<br>safety when using                |
|                                           |                                | Medium Price                                                                                                                       | Low Price                                                                                                                           | High Price                                                                          |
|                                           | Panel<br>Installation<br>Price | It is possible to install 3 VTS+VCB at<br>one side of cubicle which<br>is the minimum installation space                           | It requires at least 2 sides<br>since it can install<br>3 Mounting Type+VCB                                                         | It requires at least 2 sides<br>since it can install total<br>of 5 circuit breakers |
|                                           |                                | Low Price                                                                                                                          | High Price                                                                                                                          | High Price                                                                          |
|                                           | Maintenance<br>Cost            | It is a draw-out type so it is<br>easy to draw out from the panel<br>and an inspection of each part<br>can be done in a short time | It is a mounting-type so<br>it is difficult to draw out from<br>the panel and it requires a long<br>time an inspection of each part | After the inspection, it is necessary to check each operation of the interlock part |
|                                           |                                | Low Price                                                                                                                          | High Price                                                                                                                          | Medium Price                                                                        |
|                                           | General<br>Comparison          | Low Price                                                                                                                          | Medium Price                                                                                                                        | High Price                                                                          |

#### **Applied Locations**

•Industrial plant facilities that may suffer a loss due to a power failure

- •A place that is restricted due to the dimensions of the underground transformer room •Facilities that permit no power failure including hospitals, broadcasting stations, airports, banks and so on
- •Special fire-prevention facilities that are regulated in the Fire Services Act (Department stores, theaters, hotels and etc)

#### B5-06



On MV Power Transfer

#### **Example on Power Transfer Circuit**

Currently, there are no standardized opinions and regulations on circuit composition and equipment used for the medium-voltage power transfer (2-line circuit, power-receiving commercial power-emergency power transfer, commercial power - isolated power generation transfer) and the designers are responsible for the selection of methods and equipment, so their role is critical.

The following is an example on the power transfer circuit.



#### Reasons for Using a Switch for Power Transfer

According to the  $\lceil MV$  Power-Receiving Equipment], it is specified that a section switch should be installed at the demarcation point for the security. A section switch refers to a switch that divides the electric lines and it has a role to prevent line mixing by increasing the withhold voltage between in-phase main circuit terminals of the equipment, higher than the other parts (for example, higher than main circuit-earth), and by performing a ground fault for the abnormal voltage from outside and inside.

#### Main MV Equipment Performance (When appplying short circuit current of 8kA or 12.5kA at 7.2kV power incoming point)

| Name of Equipment<br>Main Performance      |                    | Disconnecting Switch                      | Switch                                                               | Circuit Breaker | Contact Switch       |                      |
|--------------------------------------------|--------------------|-------------------------------------------|----------------------------------------------------------------------|-----------------|----------------------|----------------------|
| Section Switch (Disconnecting) Performance |                    | 0                                         | 0                                                                    | ×               | ×                    |                      |
| Withstar                                   |                    | Between In - Phase<br>Main Circuits       | 35kV                                                                 | 35kV            | 22kV                 | 16kV                 |
|                                            | Power<br>Frequency | Between Phase - Shifting<br>Main Circuits | 22kV                                                                 | 22kV            | 22kV                 | 16kV                 |
|                                            |                    | Between Main<br>Circuit - Earth           | 22kV                                                                 | 22kV            | 22kV                 | 16kV                 |
| d Volta                                    | Impulse            | Between In - Phase<br>Main Circuits       | 70kV                                                                 | 70kV            | 60kV                 | No Regulation        |
| ige                                        |                    | Between Phase - Shifting<br>Main Circuits | 60kV                                                                 | 60kV            | 60kV                 | 45kV                 |
|                                            |                    | Between Main<br>Circuit - Earth           | 60kV                                                                 | 60kV            | 60kV                 | 45kV                 |
| Loa                                        | d Current E        | Breaking                                  | ×                                                                    | 0               | 0                    | 0                    |
| Short Circuit Current Breaking             |                    | ×                                         | ×<br>(Lock when it<br>exceeds the breaking<br>current of the switch) | 0               | ×<br>(4.4kA is max.) |                      |
| Sho                                        | rt Time Cu         | rrent                                     | 0                                                                    | 0               | 0                    | ×<br>(4.4kA is max.) |
| Clos                                       | sing Currer        | ıt                                        | ×                                                                    | 0               | 0                    | ×                    |

B<sub>5</sub>

Currently, there are no standardized opinions and regulations on circuit composition and equipment used for the high-voltage power transfer (2-line circuit, power-receiving commercial power-emergency power transfer, commercial power - isolated power generation transfer) and the designers are responsible for the selection of methods and equipment, so their role is critical.

The following figure 1 is a representative power transfer skeleton diagram. If you observe this circuit in detail by comparing with the  $\lceil MV$  Power-Receiving Equipment Manual\_J, for the transfers between commercial power (A)  $\leftrightarrow$  commercial power (B) or commercial power  $\leftrightarrow$  isolated power generation, it will be dangerous if a switch with the disconnecting function is not used.



#### Example on VTS Application

#### (1) Example on Commercial Power - Isolated Power Generation

When recovered to the commercial power, there is a delay time which is based on the  $\Gamma$ Generation Facility Manual and when there is a commercial power failure, there is no restriction in setting the transfer time from the commercial power to the isolated power generation.







If there is a power failure after 52R closing again even after 3 minutes It operates like the normal commercial power failure. (refer to table 3)

### (2) Example on Commercial Power-Emergency Power Transfer (2-line circuit power-receiving)

A commercial power-emergency power transfer circuit and its operation are marked on figure5, but it is rare in new cases, rather used by remodeling the existing installation. In this case, there are no restrictions on transfer time and so forth, but the time should be set according to the number of contact relays, section switches and so on to prevent the re-closing to the fault lines.

52 F10



#### B<sub>5</sub>

#### Surge Protection when Using VTS

On MV Power Transfer

Operation Flow in case of a Commercial Power Failure



A vacuum device interrupts arc at a high-vacuum state so it has an excellent breaking capability due to the high dielectric strength of vacuum and the high-speed diffusion of arc. However, when switching the rotating machines such as no-load motors and generators or switching the transformers, the current is interrupted before it reaches a zero point. This generates an over-voltage due to the current chopping and it may destruct the insulator of motors so a surge protection is required.

VTS performs the transfer at no-voltage, so it does not require a surge protection. (However, if VCB is used as a circuit breaker, a surge protection is required.)

- Refer to our S/A catalogue for standard on selecting a surge absorber (S/A).

| Туре                                 |    | KMSA-3.6    | KMSA-7.2    |
|--------------------------------------|----|-------------|-------------|
| Rated Voltage                        | kV | 3.3         | 6.6         |
| Applied Circuit Voltage              | kV | 3.6         | 7.2         |
| Operation Starting Voltage           | kV | 9 ~ 10      | 18 ~ 20     |
| Residual Voltage                     | kV | 13 or below | 26 or below |
| Classification Current               | kA | 5           | 5           |
| Discharge Withstand Current (4×10µs) | kA | 40          | 40          |
| Rated Frequency                      | Hz | 60          | 60          |
| Weight                               | kg | 0.41        | 0.6         |

#### Rating of Surge Absorber

Diagram

### **Control Circuit Diagram & Dimensions**



\* When composing a circuit using an operating transformer at operating power, a display lamp should be connected to the AC part.



#### Draw-Out Type(E)

Fixed Type(N)

**Dimensions** 



Vacuum Transfer Switches

B5-11



# B6 Current Limiting Power Fuses

#### CONTENTS

| Features B                              | 6-02 |
|-----------------------------------------|------|
| ConfigurationB                          | 6-04 |
| Application B                           | 6-06 |
| Ratings B                               | 6-08 |
| Fuse Selecting Conditions & Criterias B | 6-10 |
| Fuse Link StructureB                    | 6-14 |
| Characteristics Curves B                | 6-16 |
| Dimensions B                            | 6-20 |



### Current Limiting Power Fuses 3.6/7.2kV 50kA 10~200A, 24/25.8kV 40kA 1~160A



VITZRO EM Current Limiting Power Fuse passed the development test carried out by an official authentication organization and it is recognized for its superior quality and short circuit capability. It is an advanced product designed by applying the accumulated technology and experiences in the field of current limit power fuse and its application equipment.

It ensured the maximum breaking capacity within the same rating

- It is possible to provide various fuse ratings due to the development of 7.2kV 50kA and 10A~200A, 24/25.8kV 40kA and 1A 160A
- With to the development of 25.8kV Class current limiting, it can be used at local outdoors

The size is reduced for convenience and the breaking capability and safety has been improved.

- Its external dimension is minimized within the same rating.
- It realized the optimal striker.
- It is easy to select an accurate fuse capacity due to an exact time-current melting characteristics ( $\pm$ 10% or under).
- By using a strong striker, it can deliver the maximum energy with the same rating. It is an enclosed-type so it is appropriate for small places.

Its performance was recognized through technology integration and international standard certificates.

- The external shape is standardized based on DIN international standard, so it is compatible by types and ratings and it is easy to perform the maintenance work.
- It ensures an excellent current limit characteristic, small current breaking capability and low operating voltage.

# Configuration



200A, 60kV BIL

#### Application



- 3.6/7.2kV 50kA Indoor Type
- Load Break Switch LBS • 24kV 40kA 630A • Electric Type • Manual Type



VITZRO EM Current Limiting Power Fuse interrupts the short circuit current within the shortest time through the current limitation that prevents the short circuit current generated by the resistance within the fuse from reaching the crest value when much short circuit current flows. It is a protection device to minimize the mechanical and thermal damages that are generated in the switch and control system circuits.



### **Application**

#### Accessories

- For the transformer circuit To interrupt the fault current of transformer secondary short circuit & transformer circuit
- For the Capacitor circuit To interrupt the fault current of Capacitor circuit
- For the back-up protection of circuit breakers & switches For the back-up protection if the breaking capacity of CB and Switches is not enough
- For the cable circuit To protect the cable by interrupting the fault current of circuit
- For the motor circuit To interrupt the fault current of circuit where much over-current flows when the motor starts and to protect the motor
- For PT protection 1A fuse



#### Table on Main Characteristics Voltage 3.6/7.2kV 24/25.8kV Max. Breaking Current 50 kA 40 kA About 4 ~ 5 times the rated current, fuse has expanded the protection Rating Min. Breaking Current area Development tests on all ratings ranging from minimum 1A up to 200A **Rated Current** completed Sharp decrease in the crest value of fault current in case of a fuse short **Current Limiting Characteristic** circuit fault due to the excellent current-limiting characteristic **Time-Current Characteristics** Easy to select within the maximum error range of ±10% Fuse Link Length 192 mm 442mm External Dimensions Fuse Link Diameter Simplified to 3 types Simplified to 4 types Delivers the maximum operating energy among the same-type fuses Energy Delivery (medium-type) Possible to deliver the maximum operating energy through an optimal **Operating Distance** design on operating distance, minimized operating time. Striker Supporting Force

The minimum operating load is the highest among same-type fuses so it ensures a definite tripping of LBS

After the melting of fuse element, the operation ending time of striker is short which shortens to LBS trip time.

▶ The conductive bus bar is "□"- shaped and its conducting capability is doubled when compared to the existing bus bar. It minimized the temperature rise and power loss.

▶ There is a fixed part and a rotating part that enables rotation of the minimum clearance. This allows safe maintenance and replacement of fuses.

#### Applied Standards

#### IEC 60282-1

High Voltage fuses "Current limiting fuses"

Features of Fuse Holder

**Operating Time** 

#### DIN 43625

High Voltage fuses; Rated voltage 3.6 to 36kV fuse links

#### IEC 60420

High Voltage alternating current switch-fuse combination

#### KS C 4612

High Voltage Current Limit Fuse

B6-07

Ratings



% For both indoors and outdoors



#### Order Information



|                   |                 |                  | Striker           |                             |                            |            |           |             |
|-------------------|-----------------|------------------|-------------------|-----------------------------|----------------------------|------------|-----------|-------------|
|                   |                 | ø15              |                   | TTS DOOL                    | e                          |            | ø45 ød    |             |
| 24/25.8kV         | Rated           |                  | Rated             | Rated Max.                  | Rated Min.                 | External D | imensions |             |
| Fuse Link Ratings | Voltage<br>[kV] | Name of<br>Model | Current In<br>[A] | Breaking<br>Current<br>[kA] | Breaking<br>Current<br>[A] | e [mm]     | d [mm]    | Weight [kg] |
|                   |                 | VTHF24001        | 1                 |                             | 28                         |            |           |             |
|                   |                 | VTHF24005        | 5                 |                             | 36                         |            |           |             |
|                   |                 | VTHF24010        | 10                |                             | -                          |            | 56        | 2.3         |
|                   |                 | VTHF24016        | 16                |                             | 93                         |            |           |             |
|                   |                 | VTHF24020        | 20                |                             | 103                        |            |           |             |
|                   | 24              | VTHF24025        | 25                |                             | 140                        |            |           |             |
|                   |                 | VTHF24032        | 31.5              | 40                          | 155                        |            |           |             |
|                   |                 | VTHF24040        | 40                |                             | 180                        | 442        | 65        | 3.1         |
|                   |                 | VTHF24050        | 50                |                             | 210                        |            |           |             |
|                   |                 | VTHF24063        | 63                |                             | 320                        |            |           |             |
|                   |                 | VTHF24080        | 80                |                             | 430                        |            | 78        | 4.1         |
|                   | 25.8            | VTHF25100        | 100               |                             | 560                        |            |           |             |
|                   |                 | VTHF24125        | 125               |                             | 760                        |            | 88        | 59          |
|                   | 24              | VTHF24160        | 160               | 31.5                        | 900                        |            | 00        | 0.7         |
|                   |                 | VTHF24200        | 200               | 01.0                        | 1050                       |            |           |             |

% When applying VTHF24200, please contact our company.

#### 24/25.8kV Fuse Holder

| Rated   | Name of | Max. Rated | Rated Max.       | Insulation  |  |
|---------|---------|------------|------------------|-------------|--|
| Voltage | Model   | Current    | Breaking Current | Class (BIL) |  |
| 24kV    | VTHFB24 | 200A       | 40kA             | 125kV       |  |



### **Fuse Selecting Conditions & Criterias**

Fuse Selecting Conditions & Standard

#### Selection based on Operating Location

There are fuses for indoors and outdoors and the insulators used, material of metal tool, coating structure and so on are different. But, VITZRO EM MV Fuse can be used both at indoors and outdoors. 2 types of base insulators - polysil and epoxy - can be used and its durability is improved by nickel coating.

#### Selection based on Rated Voltage

The voltage of the circuit should be same as the rated voltage of the fuse and the insulation level of the circuit should be higher than the operating over-voltage of the fuse. Moreover, it should be used at each pole of 3-phase circuit (3poles) and single-phase circuit (2poles).

#### Selection based on Rated Current

The rated current of the fuse should exceed the load circuit current and the overall load current of protectors. In addition, in case of a normal conduction, there should not be any heat and it should be selected by considering the short time tolerance and repetitive over-current characteristic. It should be selected by considering the exciting inrush current of the transformer, the starting current of the motor, the inrush current of the Capacitor, the lightning current and so on.

#### Selection based on Rated Breaking Capacity

The rated breaking capacity of the fuse should be sufficient enough to interrupt even when the short circuit current of the circuit is not much. Generally, shortage of fuse breaking capacity may lead to fuse explosions so it must be considered and VITZRO MV Current Limiting Fuse is recognized for its breaking capacity of 3.6 / 7.2kV 50kA, 24kV 40kA, 25.8kV 40kA for the first time in the country.

#### Protective Action Coordination with Load Circuit and Protectors

The operation characteristic of fuse should be lower than the over-current characteristic of protectors and load circuit and the generated heat quantity due to  $I^2t$  of the operating heat energy should be smaller than the short-circuit level of the load circuit or protectors.

#### Selection based on Operation Characteristic Type

By establishing the melting characteristic and repetitive overload characteristic that are suitable for each load operating condition, it can be selected for each type based on KSC4612 for the simple selection of fuse rated current and fuse protection coordination.

- (1) T-Type : It is for the transformer circuit and it sets the melting characteristic at 0.1 sec considering the exciting inrush current.
- (2) M-Type : It is for the motor circuit and it sets the melting characteristic at 10 sec considering the starting current of motor.

It is marked by classifying into 2 types.

- (3) T/M-Type : It is for the transformer and motor and it sets the melting characteristic between 0.1 sec and 10 sec considering the exciting current of transformer and starting current of motor.
- (4) C-Type : It is for the Capacitor circuit and it sets the melting characteristic at 0.002 sec considering the inrush current of Capacitor.
- (5) G-Type : It is for the normal load and it does not set the special melting characteristic.

#### Selection based on Small Current Breaking Capability

There is a limit to interruptible small current in the current limit fuse. It is required to be cautious at this area. In order to manufacture a compact, economical current limit fuse, it is normal to set the minimum breaking current as several times the rated current and the small current breaking capability should be set as the minimum breaking current at KSC4612. These are required to be guaranteed by the manufacturers and it is marked by classifying into 2 types.

- (1) General-Purpose Fuse : It is a fuse that can interrupt for a long time at a small current and it can interrupt the current ranging from about 2 times the rated current up to the rated breaking current.
- (2) Back-Up Protection Fuse : It is a fuse that can interrupt all currents ranging from the minimum breaking current that is guaranteed by the manufacturer up to the rated breaking current.

#### **Table on Main Characteristics**

**Fuse Selection** 

Criteria

| Fues Ture              | Non-Fusing                        | Melting Ch                      | Repetitive Over -                             |                                                                                      |
|------------------------|-----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Fuse Type              | Current                           | 10s Fusing Current              | 0.1 s Fusing Current                          | Current Characteristic                                                               |
| T<br>(For Transformer) |                                   | $2.5 \ln \le 1_{10} \le 10 \ln$ | 12 ln $\le$ 10.1 $\le$ 25 ln                  | Non-fusing for 100 times at 10 ln $\leq$ 0.1 s                                       |
| M<br>(For Motor)       | Non-fusing for                    | 6 ln $\le$ l 10 $\le$ 10 ln     | $15 \ln \le 1_{0.1} \le 35 \ln$               | Non-fusing for 1000 times at 5 ln $\leq$ 10s                                         |
| G<br>(For Normal Load) | 2 nours at 1.3 in                 | $2 \ln \le 1.0 \le 5 \ln$       |                                               | 100 times at 10 ln ≤<br>0.1s (non-fuse), 1000<br>times at 1,5 ln ≤ 10s<br>(non-fuse) |
| C<br>(For Capacitor)   | Non-fusing for<br>2 hours at 2 In | 1                               | Non-fusing for 100<br>times at 70 In. 0.002 s |                                                                                      |

In : Rated Current

In: 10 s Fusing Current (Mean Value) Io.1 : 0.1 s Fusing Current (Mean Value)

#### **Power Fuse for Motor Circuit Protection**

| Criteria for each<br>purpose | Rated<br>Voltage<br>[kV] | Constant | Motor Output<br>Rated Capacity<br>[kW] | Rated<br>Voltage<br>[kV] | Constant | Motor Output<br>Rated Capacity<br>[kW] | Applied<br>Fuse Link |
|------------------------------|--------------------------|----------|----------------------------------------|--------------------------|----------|----------------------------------------|----------------------|
|                              |                          |          | 9 ~ 19                                 |                          |          | 15~25                                  | VTHF07010            |
| L.                           |                          |          | 19 ~ 39                                | 6.6                      | 3Ø       | 35~57                                  | VTHF07020            |
| Fuse                         |                          | 3Ø       | 36 ~ 69                                |                          |          | 69~95                                  | VTHF07032            |
| T T                          | 3.3                      |          | 65 ~ 88                                |                          |          | 88~183                                 | VTHF07040            |
| Vacuum                       |                          |          | 89 ~ 110                               |                          |          | 178~228                                | VTHF07050            |
| Contact                      |                          |          | 112 ~ 156                              |                          |          | 225~313                                | VTHF07063            |
|                              |                          |          | 152 ~ 228                              |                          |          | 304~435                                | VTHF07080            |
|                              |                          |          | 190 ~ 285                              |                          |          | 381~571                                | VTHF07100            |
|                              |                          |          | 238 ~ 357                              |                          |          | 476~751                                | VTHF07125            |
|                              |                          |          | 269 ~ 457                              |                          |          | 630~1015                               | VTHF07160            |
| <b>W</b>                     |                          |          | 326 ~ 519                              |                          |          | 913~1522                               | VTHF07200            |

< Detailed Selecting Conditions >

1. The starting current of the motor is selected by assuming a conduction of 5 times the motor full load current for 10 seconds.

2. The above conditions may change according to the starting time, starting current and starting counts so take note of them when selecting.

B6-11

### **Fuse Selecting Conditions & Criterias**

**Power Fuse for Transformer Circuit Protection** 

Fuse Selection Criteria for each purpose



| Rated Voltage | Transformer Ra | Applied     |           |
|---------------|----------------|-------------|-----------|
| [kV]          | 1Ø             | 3Ø          | Fuse Link |
|               | 6 ~ 13         | 11 ~ 23     | VTHF07010 |
|               | 15 ~ 29        | 25 ~ 52     | VTHF07020 |
|               | 23 ~ 45        | 40 ~ 82     | VTHF07032 |
| 3.3           | 38 ~ 83        | 69 ~ 143    | VTHF07040 |
|               | 47 ~ 103       | 87 ~ 178    | VTHF07050 |
|               | 59 ~ 130       | 109 ~ 240   | VTHF07063 |
|               | 75 ~ 176       | 138 ~ 304   | VTHF07080 |
|               | 132 ~ 220      | 228 ~ 381   | VTHF07100 |
|               | 165 ~ 275      | 285 ~ 476   | VTHF07125 |
|               | 211 ~ 352      | 365 ~ 609   | VTHF07160 |
|               | 264 ~ 440      | 457 ~ 761   | VTHF07200 |
|               | 12 ~ 26        | 21 ~ 46     | VTHF07010 |
|               | 29 ~ 57        | 51 ~ 99     | VTHF07020 |
|               | 46 ~ 90        | 80 ~ 156    | VTHF07032 |
|               | 75 ~ 165       | 130 ~ 285   | VTHF07040 |
|               | 94 ~ 206       | 163 ~ 357   | VTHF07050 |
| 6.6           | 139 ~ 277      | 240 ~ 480   | VTHF07063 |
|               | 176 ~ 352      | 304 ~ 609   | VTHF07080 |
|               | 264 ~ 440      | 457 ~ 761   | VTHF07100 |
|               | 330 ~ 550      | 571 ~ 952   | VTHF07125 |
|               | 422 ~ 704      | 731 ~ 1218  | VTHF07160 |
|               | 528 ~ 880      | 913 ~ 1522  | VTHF07200 |
|               | 4 ~ 8          | 7 ~ 15      | VTHF24001 |
|               | 20 ~ 44        | 36 ~ 76     | VTHF24005 |
|               | 42 ~ 92        | 75 ~ 158    | VTHF24010 |
|               | 81 ~ 167       | 141 ~ 276   | VTHF24016 |
|               | 102 ~ 208      | 176 ~ 344   | VTHF24020 |
|               | 127 ~ 260      | 220 ~ 431   | VTHF24025 |
| 22.0          | 160 ~ 328      | 264 ~ 540   | VTHF24032 |
| 22.7          | 262 ~ 539      | 466 ~ 990   | VTHF24040 |
|               | 347 ~ 716      | 600 ~ 1238  | VTHF24050 |
|               | 416 ~ 916      | 743 ~ 1585  | VTHF24063 |
|               | 573 ~ 1145     | 990 ~ 1981  | VTHF24080 |
|               | 916 ~ 1527     | 1585 ~ 2641 | VTHF25100 |
|               | 1301 ~ 1908    | 2251 ~ 3301 | VTHF24125 |
|               | 2036 ~ 2443    | 3522 ~ 4226 | VTHF24160 |

#### $\langle Detailed Selecting Conditions \rangle$

1. The inrush current of transformer is selected by assuming 10 times of the transformer full load current for 0.1 sec.

2. The rated current of fuse is selected so that it can continuously conduct 1.5 times the transformer rated current.

3. The transformer fuse is selected by assuming that it can interrupt 25 times the transformer rated current within

2 seconds in case of a secondary short circuit.

#### Fuse Selection Criteria for each purpose



| Rated<br>Voltage<br>[kV] | Constant | Capacitor<br>Rated Capacity<br>[kVA] | Applied<br>Fuse Link | Rated<br>Voltage<br>[kV] | Constant | Capacitor<br>Rated Capacity<br>[kVA] | Applied<br>Fuse Link |
|--------------------------|----------|--------------------------------------|----------------------|--------------------------|----------|--------------------------------------|----------------------|
|                          |          | Less than 12                         | VTHF07010            |                          |          | Less than 25                         | VTHF24001            |
|                          |          | 12 ~ 32                              | VTHF07020            |                          |          | 25 ~ 53                              | VTHF24005            |
|                          |          | 32 ~ 50                              | VTHF07032            |                          |          | 53 ~ 86                              | VTHF24010            |
|                          |          | 50 ~ 63                              | VTHF07040            |                          |          | 86 ~ 154                             | VTHF24016            |
|                          |          | 63 ~ 79                              | VTHF07050            |                          |          | 154 ~ 209                            | VTHF24020            |
| 3.3                      | 3Ø       | 79 ~ 114                             | VTHF07063            |                          | 3Ø       | 209 ~ 261                            | VTHF24025            |
|                          |          | 114 ~ 180                            | VTHF07080            | 22.9                     |          | 261 ~ 329                            | VTHF24032            |
|                          |          | 180 ~ 225                            | VTHF07100            |                          |          | 329 ~ 480                            | VTHF24040            |
|                          |          | 225 ~ 282                            | VTHF07125            |                          |          | 480 ~ 600                            | VTHF24050            |
|                          |          | 282 ~ 384                            | VTHF07160            |                          |          | 600 ~ 756                            | VTHF24063            |
|                          |          | 384 ~ 550                            | VTHF07200            |                          |          | 756 ~ 1200                           | VTHF24080            |
|                          |          | Less than 19                         | VTHF07010            |                          |          | 1200 ~ 1846                          | VTHF25100            |
|                          |          | 24 ~ 63                              | VTHF07020            |                          |          | 1846 ~ 2500                          | VTHF24125            |
|                          |          | 63 ~ 99                              | VTHF07032            |                          |          | 2500 ~ 3200                          | VTHF24160            |
|                          |          | 99 ~ 125                             | VTHF07040            |                          |          |                                      |                      |
|                          |          | 125 ~ 157                            | VTHF07050            |                          |          |                                      |                      |
| 6.6                      | ЗØ       | 157 ~ 227                            | VTHF07063            |                          |          |                                      |                      |
|                          |          | 227 ~ 360                            | VTHF07080            |                          |          |                                      |                      |
|                          |          | 360 ~ 450                            | VTHF07100            |                          |          |                                      |                      |
|                          |          | 450 ~ 563                            | VTHF07125            |                          |          |                                      |                      |
|                          |          | 563 ~ 768                            | VTHF07160            |                          |          |                                      |                      |
|                          |          | 768 ~ 1100                           | VTHF07200            |                          |          |                                      |                      |

#### Power Fuse for Capacitor Circuit Protection

(Detailed Selecting Conditions)

1. The inrush current of Capacitor is selected by assuming a conduction of 71 times the Capacitor rated current for 0.002 sec.

2. The rated current of fuse is selected so that it can continuously conduct 1.5 times the Capacitor rated current.

#### Power Fuse for Wire Protection



| Wire[mm²] | Applied Fuse Link |       | \\/irco[2] | Applied Fuse Link |      |
|-----------|-------------------|-------|------------|-------------------|------|
|           | 3.6 / 7.2kV       | 24kV  | wirelmil   | 3.6 / 7.2kV       | 24kV |
| 3.5       | 10A               | 10A   | 80         | 80A               | 63A  |
| 5.5       | 20A               |       | 100        |                   |      |
| 8         |                   | 16A   | 125        | 100A              | 80A  |
| 14        | 31.5A             | 20A   | 150        |                   |      |
| 22        |                   | 25A   | 200        | 125A              | 100A |
| 30        | 40A               | 31.5A | 250        | 160A              | 125A |
| 38        | 50A               | 40A   | 325        | 200A              | 160A |
| 50        |                   |       | 400        |                   |      |
| 60        | 63A               | 50A   | 500        | -                 | 200A |
|           |                   |       |            |                   |      |

 $\langle Detailed Selecting Conditions \rangle$ 

1. The above allowable current is based on IV wire and it is selected by assuming an interruption at 5 times the rated current within 2 seconds.

### **Fuse Link Structure**

### General Structure of Fuse Link

- •A fuse element that is shaped to meet the characteristic required in each rating is coiled in a spiral at the molded insulation magnetic rod as shown below. It is fixed by spot welding at both-end caps and the fuse element is fully buried in the silica as the unique shape of the molded insulation magnetic rod with an excellent current limit characteristic.
- A high-resistant, pilot wire is in a spiral inside the insulation magnetic rod to improve the conductivity and breaking capability. For the prompt fusing of the pilot wire that fixes the striker spring after the fuse melting, high-conductive pin is used for fixation at the upper cap.
- The internal arc-extinguish medium is a mineral, insulating material with good thermal conductivity and a silicon with high melting point was used. To increase the charging density inside the fuse, the silicon shape, particle size and distribution were considered.







#### **Characteristics of Striker**

0

0

The operating load of striker (striker pin) is increased to check the operating state of fuse and the deliverable energy is the maximum when compared to other similar medium type strikers and the supporting force is maximized to prevent retroaction.

15

25

30 s[mm]

20

10

5

The operating time of striker after the fuse melting is minimized to strengthen the electrical signal and mechanical interlock functions. It is easy to check the operation with the naked eyes using the red indicator bar.

### **Characteristic Curves**





### Operating Characteristic Curves

**Time-Current Characteristics** 

B<sub>6</sub>

### **Characteristic Curves**



Operating Characteristic Curves

24kV Time - Current Characteristic

**Time-Current Characteristics** 



#### Operating Characteristic Curves





B<sub>6</sub>



### **Dimensions**



24/25.8kV





400 693 619 **Current Limiting Power Fuses** 

B<sub>6</sub>


# B7 Vacuum Interrupters

## CONTENTS

| -eatures                        | B7-02 |
|---------------------------------|-------|
| Structure & Operating Principle | B7-04 |
| Ratings                         | B7-06 |
| Dimensions                      | B7-08 |



# Vacuum Interrupter VI



VITZRO EM Vacuum Interrupter (V.I) is a core part that composes the breaking part of medium-voltage VCB. Generally, it is a satisfactory conductor to supply power and it promptly interrupts the current in case of an overload and short circuit faults to ensure the insulation. It is the most ideal, arc-extinguishing device.

## Certification

It is a high-performing, highly reliable product and its electrical and mechanical cycle has improved.

- Its performance is optimized by applying the vacuum technology accumulated for more than 25 years.
- It is possible to maintain the high-vacuum state for a long time due to the brazing of vacuum furnace at a clean room and the automatic processing of vacuum exhaust unit.
- Through a single compression processing of individual contact, its mechanical strength is good and it does not transform even with more than 10,000 times of unload operations.

Its performance is improved due to a high-speed breaking and a short arc time.

- As a quick insulation recovery characteristic in the vacuum state, after the contact opening, it interrupts the current at the zero point of initial current which shortens the arc time resulting in less damages and losses of contacts.
- It maintains high reliability by collecting and storing all information on manufacturing and by saving and managing manufacturing history of individual product.

## **Structure & Operating Principle**

#### Structure

# The basic structure of a general V.I is shown below and it consists of a fixed lead, a movable lead, contacts, an arc shield, metal bellows and twist protection plate.

VITZRO EM V.I maintains a highly reliable, high-vacuum state due to the automation process and its internal pressure is  $5 \times 10^{-7}$  torr under.





#### V.I Current Breaking Principle.

When the contacts that were conducting current to the inner V.I are physically opened, a vacuum arc is generated between the contacts and this continues until the next zero current point. The arc under the influence of vacuum is affected by the magnetic field that is generated by contact structure and shape and it diffuses the arc to the next zero current point or drives to the random direction.

That is, the first arc generated by the inductive magnetic field formed by the contact structure and shape forms a single contact point and then diffuses the arc to the whole surface of contacts. This prevents a sectional overheating and damages to contacts. When the dielectric strength between both contacts at the vacuum state gets higher than the power part voltage, the arc is extinguished at the next zero current point and a power voltage (Recovery Voltage) is generated between poles to complete the interruption.

#### **Cutoff Characteristic of V.I**



B<sub>7</sub>

# Ratings



Vacuum Interrupter (V.I) is a core part that mainly composes the contact part of medium-voltage VCB and it is a product that requires reliability even at high-voltage current that is generated due to the overload and short circuit faults. VITZRO EM designs and manufactures V.I and uses a finealumina ceramic tube that has an excellent vacuum-sealed characteristic and a mechanical characteristic for the production of highly reliable V.I. Also, Cu-Cr contacts are adopted to improve the high-voltage insulation and breaking capability.

| Applied Range            |                                                            |         |          | A Switchgear | •         | Circuit Breaker |         |           |           |           |  |
|--------------------------|------------------------------------------------------------|---------|----------|--------------|-----------|-----------------|---------|-----------|-----------|-----------|--|
| Additional insuation     |                                                            |         | Air      |              | GAS etc.  |                 |         | Air       |           |           |  |
| Name of Type             |                                                            |         | 5F       | OK           | OKPN      | M20QD           |         | M50SC     | M51S      | M71R      |  |
| Shape                    |                                                            |         | Ņ        | Ũ            | ļ         |                 |         | ļ         | ļ         | Û         |  |
| <b>Electrical Rating</b> | Rated Voltage                                              | kV      | 7.2      | 7.2          | 25.8      | 7.2             |         | 7.2       | 12/15     | 17.5      |  |
|                          | Power Frequency Withstand Voltage                          | kV      | 20       | 35           | 60        | 22              |         | 22        | 36        | 38        |  |
|                          | Lightning Impulse Withstand Voltage                        | kV      | 60       | 85           | 150       | 60              |         | 60        | 95        | 95        |  |
|                          | Rated Frequency                                            | Hz      | 50/60    | 50/60        | 50/60     | 50/60           |         | 50/60     | 50/60     | 50/60     |  |
|                          | Rated Normal Current                                       | Α       | 400      | 630          | 630       | 400             | 630     | 3150      | 2000      | 630/1250  |  |
|                          | Rated Short Circuit Breaking Current                       | kA      | (4)      | (4)          | (4)       | 8               | 12.5    | 40        | 25        | 25        |  |
|                          | Rated Short Circuit Making Current                         | kAp     | 10.4     | 32.5         | 32.5      | 20.8            | 32.5    | 104       | 65        | 65        |  |
|                          | Rated Short-Time Current                                   | kA/3sec | 6.3 (1s) | 12.5 (4s)    | 12.5 (4s) | 8               | 12.5    | 40        | 25        | 25        |  |
|                          | Stroke                                                     | mm      | 4±0.3    | 8±0.5        | 12-1      | 8±1             |         | 8±1       | 12±1      | 12±1      |  |
|                          | Opening Speed, Average<br>(average of first 75% of stroke) | m/s     | 0.5±0.1  | 0.8±0.1      | 0.9±0.1   | 0.9±0.2         | 1.2±0.3 | 1.5±0.2   | 1.7±0.2   | 1.3±0.2   |  |
|                          | Closing Speed. Average<br>(average of last 30% of stroke)  | m/s     | 0.35±0.1 | 0.6±0.1      | 1.0±0.2   | 0.7±0.2         |         | 0.8±0.2   | 1.2±0.2   | 1.3±0.2   |  |
| Me                       | Maximum Overtravel                                         | mm      | 1        | 2            | 2         | 2               |         | 3         | 3         | 3         |  |
| echanical Rating         | Maximum Overtravel Duration                                | ms      | 5        | 5            | 5         | 5               |         | 5         | 5         | 5         |  |
|                          | Maximum Rebound                                            | mm      | 0.75     | 2            | 2         | 2               |         | 2         | 2         | 2         |  |
|                          | Maximum Contact Erosion                                    | mm      | 1        | 1            | 2         | 1.5             |         | 2         | 3         | 3         |  |
|                          | Total Contact Force<br>(Including Free Contact Force)      | kg∙f    | 10≤F≤18  | 50≤F≤65      | 50≤F≤65   | 25≤F≤40         | 50≤F≤60 | 450≤F≤550 | 180≤F≤220 | 180≤F≤220 |  |
|                          | Free Contact Force                                         | kg f    | 7        | 7            | 7         | 7               | 7       | 27        | 16        | 16        |  |
|                          | Mechanical Life (no load)                                  | times   | 500,000  | 10,000       | 10,000    | 10,000          | 10,000  | 10,000    | 10,000    | 10,000    |  |
|                          | Weight of Interrupter                                      | kg      | 0.6      | 1.1          | 1.1       | 0.7             | 1       | 5.5       | 4.2       | 2         |  |

## **Applied Product**



Vacuum Circuit Breaker, VCB



Vacuum Contactor Switch, VCS



Eco-friendly Gas Insulated Switchgear, ECO-GIS

| Circuit Breaker |           |           |           |            |           |           |          |           |           |  |
|-----------------|-----------|-----------|-----------|------------|-----------|-----------|----------|-----------|-----------|--|
|                 |           | A         | GAS etc.  |            |           |           |          |           |           |  |
| M101T           | M102R     | M202T     | M102STR   | M121T      | M263T     | M203R     | M52Q     | M102SGI   | M454S     |  |
|                 | ļ         |           |           | Ţ          | ļ         | ļ         |          |           |           |  |
| 4.76/8.25/15    | 25.8      | 25.8      | 27.5      | 12/15/17.5 | 38        | 36        | 24       | 25.8      | 72/84     |  |
| 19/36           | 60        | 60        | 75        | 38         | 80        | 70        | 60       | 70        | 140/160   |  |
| 60/95           | 125       | 150       | 175       | 95         | 200       | 170       | 125      | 150       | 350/400   |  |
| 50/60           | 50/60     | 50/60     | 50/60     | 50/60      | 50/60     | 50/60     | 50/60    | 50/60     | 50/60     |  |
| 3000            | 630/1250  | 3150      | 1000      | 3150       | 3000      | 1250      | 630      | 2000      | 2000      |  |
| 50/40           | 25        | 40        | 20        | 40         | 40        | 25        | 12.5     | 25        | 31.5      |  |
| 130/104         | 65        | 104       | 52        | 104        | 104       | 65        | 32.5     | 65        | 79        |  |
| 50/40           | 25        | 40 (1s)   | 20 (1s)   | 40         | 40        | 25        | 12.5     | 25        | 31.5 (2s) |  |
| 10±1            | 16±1      | 16±1      | 20±1      | 12±1       | 20±1      | 18±1      | 16±1     | 16±1      | 40+2      |  |
| 1.0±0.1         | 1.5±0.2   | 1.7±0.2   | 1.0±0.2   | 1.6±0.2    | 1.5±0.1   | 1.5±0.2   | 1.5±0.2  | 1.5±0.2   | 1.7±0.2   |  |
| 1.0±0.1         | 1.0±0.2   | 1.1±0.2   | 1.0±0.2   | 1.2±0.2    | 1.0±0.1   | 1.0±0.2   | 0.9±0.1  | 1.0±0.2   | 1.2±0.2   |  |
| 3               | 3         | 3         | 3         | 3          | 3         | 3         | 3        | 3         | 2         |  |
| 5               | 5         | 5         | 5         | 5          | 5         | 5         | 5        | 5         | 5         |  |
| 2               | 2         | 2         | 2         | 2          | 2         | 2         | 2        | 2         | 2         |  |
| 3               | 3         | 3         | 3         | 2          | 3         | 2         | 3        | 3         | 2         |  |
| 390≤F≤450       | 180≤F≤220 | 450≤F≤550 | 180≤F≤220 | 450≤F≤550  | 330≤F≤380 | 330≤F≤380 | 95≤F≤124 | 180≤F≤220 | 300≤F≤400 |  |
| 27              | 20        | 27        | 27        | 24         | 27        | 27        | 10       | 27        | 27        |  |
| 10,000          | 10,000    | 10,000    | 250,000   | 10,000     | 10,000    | 10,000    | 10,000   | 10,000    | 10,000    |  |
| 7.2             | 4.2       | 9.5       | 7.4       | 6.3        | 11.8      | 6.9       | 2        | 6.3       | 21        |  |

# Dimensions





**B**7

# **Dimensions & Certifications**

Dimensions







### GLOBAL SERVICE SUPPORT BUSINESS



## Electric Equipment General Catalog

LV Equipment MV Equipment Integrated Protection & Monitoring Equipment Protective Equipment

#### VITZROEM Co., Ltd.

www.vitzroem.com

#### Head office & factory

327, Byeolmang-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Korea Tel.**+82-31-489-2000** Fax.**+82-31-492-2216** 

Seoul office

VITZRO Bldg, 7, Neungdong-ro 25-gil, Gwangjin-gu, Seoul, Korea Tel. **+82-2-2024-3154, 3157-9** Fax. **+82-2-3436-1900** 

#### Busan office

3-109, Industrial Goods Shopping Center, 37, Gwaegam-ro, Sasang-gu, Busan, Korea Tel.**+82-51-319-2765** Fax.**+82-51-319-2766** 

Honam office

201-1401, AM-CITY Central Park 2(i)-cha, 87, Cheomdanjungang-ro 170beon-gil, Gwangsan-gu, Gwangju, Korea Tel.**+82-62-974-8601** Fax.**+82-62-974-8602** 

### (C) Service Center +82-1577-1820

Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

2019.04(E-05)